Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Mol Ther ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39295144

ABSTRACT

Pompe disease, a rare genetic neuromuscular disorder, is caused by a deficiency of acid alpha-glucosidase (GAA), leading to an accumulation of glycogen in lysosomes, and resulting in the progressive development of muscle weakness. The current standard treatment, enzyme replacement therapy (ERT), is not curative and has limitations such as poor penetration into skeletal muscle and both the central and peripheral nervous systems, a risk of immune responses against the recombinant enzyme, and the requirement for high doses and frequent infusions. To overcome these limitations, lentiviral vector-mediated hematopoietic stem and progenitor cell (HSPC) gene therapy has been proposed as a next-generation approach for treating Pompe disease. This study demonstrates the potential of lentiviral HSPC gene therapy to reverse the pathological effects of Pompe disease in a preclinical mouse model. It includes a comprehensive safety assessment via integration site analysis, along with single-cell RNA sequencing analysis of central nervous tissue samples to gain insights into the underlying mechanisms of phenotype correction.

2.
Mol Ther Methods Clin Dev ; 27: 464-487, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36419467

ABSTRACT

Pompe disease is a rare genetic neuromuscular disorder caused by acid α-glucosidase (GAA) deficiency resulting in lysosomal glycogen accumulation and progressive myopathy. Enzyme replacement therapy, the current standard of care, penetrates poorly into the skeletal muscles and the peripheral and central nervous system (CNS), risks recombinant enzyme immunogenicity, and requires high doses and frequent infusions. Lentiviral vector-mediated hematopoietic stem and progenitor cell (HSPC) gene therapy was investigated in a Pompe mouse model using a clinically relevant promoter driving nine engineered GAA coding sequences incorporating distinct peptide tags and codon optimizations. Vectors solely including glycosylation-independent lysosomal targeting tags enhanced secretion and improved reduction of glycogen, myofiber, and CNS vacuolation in key tissues, although GAA enzyme activity and protein was consistently lower compared with native GAA. Genetically modified microglial cells in brains were detected at low levels but provided robust phenotypic correction. Furthermore, an amino acid substitution introduced in the tag reduced insulin receptor-mediated signaling with no evidence of an effect on blood glucose levels in Pompe mice. This study demonstrated the therapeutic potential of lentiviral HSPC gene therapy exploiting optimized GAA tagged coding sequences to reverse Pompe disease pathology in a preclinical mouse model, providing promising vector candidates for further investigation.

3.
Appl Clin Inform ; 12(1): 17-26, 2021 01.
Article in English | MEDLINE | ID: mdl-33440429

ABSTRACT

BACKGROUND: Even though clinical trials are indispensable for medical research, they are frequently impaired by delayed or incomplete patient recruitment, resulting in cost overruns or aborted studies. Study protocols based on real-world data with precisely expressed eligibility criteria and realistic cohort estimations are crucial for successful study execution. The increasing availability of routine clinical data in electronic health records (EHRs) provides the opportunity to also support patient recruitment during the prescreening phase. While solutions for electronic recruitment support have been published, to our knowledge, no method for the prioritization of eligibility criteria in this context has been explored. METHODS: In the context of the Electronic Health Records for Clinical Research (EHR4CR) project, we examined the eligibility criteria of the KATHERINE trial. Criteria were extracted from the study protocol, deduplicated, and decomposed. A paper chart review and data warehouse query were executed to retrieve clinical data for the resulting set of simplified criteria separately from both sources. Criteria were scored according to disease specificity, data availability, and discriminatory power based on their content and the clinical dataset. RESULTS: The study protocol contained 35 eligibility criteria, which after simplification yielded 70 atomic criteria. For a cohort of 106 patients with breast cancer and neoadjuvant treatment, 47.9% of data elements were captured through paper chart review, with the data warehouse query yielding 26.9% of data elements. Score application resulted in a prioritized subset of 17 criteria, which yielded a sensitivity of 1.00 and specificity 0.57 on EHR data (paper charts, 1.00 and 0.80) compared with actual recruitment in the trial. CONCLUSION: It is possible to prioritize clinical trial eligibility criteria based on real-world data to optimize prescreening of patients on a selected subset of relevant and available criteria and reduce implementation efforts for recruitment support. The performance could be further improved by increasing EHR data coverage.


Subject(s)
Biomedical Research , Electronic Health Records , Clinical Trials as Topic , Electronics , Humans , Patient Selection , Research Design
4.
PLoS Pathog ; 16(10): e1008461, 2020 10.
Article in English | MEDLINE | ID: mdl-33002089

ABSTRACT

The induction of an interferon-mediated response is the first line of defense against pathogens such as viruses. Yet, the dynamics and extent of interferon alpha (IFNα)-induced antiviral genes vary remarkably and comprise three expression clusters: early, intermediate and late. By mathematical modeling based on time-resolved quantitative data, we identified mRNA stability as well as a negative regulatory loop as key mechanisms endogenously controlling the expression dynamics of IFNα-induced antiviral genes in hepatocytes. Guided by the mathematical model, we uncovered that this regulatory loop is mediated by the transcription factor IRF2 and showed that knock-down of IRF2 results in enhanced expression of early, intermediate and late IFNα-induced antiviral genes. Co-stimulation experiments with different pro-inflammatory cytokines revealed that this amplified expression dynamics of the early, intermediate and late IFNα-induced antiviral genes can also be achieved by co-application of IFNα and interleukin1 beta (IL1ß). Consistently, we found that IL1ß enhances IFNα-mediated repression of viral replication. Conversely, we observed that in IL1ß receptor knock-out mice replication of viruses sensitive to IFNα is increased. Thus, IL1ß is capable to potentiate IFNα-induced antiviral responses and could be exploited to improve antiviral therapies.


Subject(s)
Gene Expression Regulation, Viral/drug effects , Interferon Regulatory Factor-2/metabolism , Interferon-alpha/pharmacology , Lymphocytic Choriomeningitis/drug therapy , Lymphocytic choriomeningitis virus/drug effects , Receptors, Interleukin-1 Type I/physiology , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/immunology , Hepatocytes/virology , Humans , Interferon Regulatory Factor-2/genetics , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/pathology , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/isolation & purification , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA Stability
5.
Mol Syst Biol ; 16(7): e8955, 2020 07.
Article in English | MEDLINE | ID: mdl-32696599

ABSTRACT

Tightly interlinked feedback regulators control the dynamics of intracellular responses elicited by the activation of signal transduction pathways. Interferon alpha (IFNα) orchestrates antiviral responses in hepatocytes, yet mechanisms that define pathway sensitization in response to prestimulation with different IFNα doses remained unresolved. We establish, based on quantitative measurements obtained for the hepatoma cell line Huh7.5, an ordinary differential equation model for IFNα signal transduction that comprises the feedback regulators STAT1, STAT2, IRF9, USP18, SOCS1, SOCS3, and IRF2. The model-based analysis shows that, mediated by the signaling proteins STAT2 and IRF9, prestimulation with a low IFNα dose hypersensitizes the pathway. In contrast, prestimulation with a high dose of IFNα leads to a dose-dependent desensitization, mediated by the negative regulators USP18 and SOCS1 that act at the receptor. The analysis of basal protein abundance in primary human hepatocytes reveals high heterogeneity in patient-specific amounts of STAT1, STAT2, IRF9, and USP18. The mathematical modeling approach shows that the basal amount of USP18 determines patient-specific pathway desensitization, while the abundance of STAT2 predicts the patient-specific IFNα signal response.


Subject(s)
Feedback, Physiological/drug effects , Hepatocytes/metabolism , Interferon-alpha/pharmacology , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , Signal Transduction/drug effects , Cell Line, Tumor , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Hepatocytes/drug effects , Humans , Interferon Regulatory Factor-2/genetics , Interferon Regulatory Factor-2/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Models, Theoretical , RNA, Small Interfering , STAT1 Transcription Factor/genetics , STAT2 Transcription Factor/genetics , Signal Transduction/genetics , Software , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
6.
Proc Natl Acad Sci U S A ; 116(15): 7533-7542, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30898885

ABSTRACT

Activation of the Met receptor tyrosine kinase, either by its ligand, hepatocyte growth factor (HGF), or via ligand-independent mechanisms, such as MET amplification or receptor overexpression, has been implicated in driving tumor proliferation, metastasis, and resistance to therapy. Clinical development of Met-targeted antibodies has been challenging, however, as bivalent antibodies exhibit agonistic properties, whereas monovalent antibodies lack potency and the capacity to down-regulate Met. Through computational modeling, we found that the potency of a monovalent antibody targeting Met could be dramatically improved by introducing a second binding site that recognizes an unrelated, highly expressed antigen on the tumor cell surface. Guided by this prediction, we engineered MM-131, a bispecific antibody that is monovalent for both Met and epithelial cell adhesion molecule (EpCAM). MM-131 is a purely antagonistic antibody that blocks ligand-dependent and ligand-independent Met signaling by inhibiting HGF binding to Met and inducing receptor down-regulation. Together, these mechanisms lead to inhibition of proliferation in Met-driven cancer cells, inhibition of HGF-mediated cancer cell migration, and inhibition of tumor growth in HGF-dependent and -independent mouse xenograft models. Consistent with its design, MM-131 is more potent in EpCAM-high cells than in EpCAM-low cells, and its potency decreases when EpCAM levels are reduced by RNAi. Evaluation of Met, EpCAM, and HGF levels in human tumor samples reveals that EpCAM is expressed at high levels in a wide range of Met-positive tumor types, suggesting a broad opportunity for clinical development of MM-131.


Subject(s)
Antibodies, Bispecific/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Epithelial Cell Adhesion Molecule/antagonists & inhibitors , Hepatocyte Growth Factor/metabolism , Neoplasms, Experimental/drug therapy , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Cell Line, Tumor , Epithelial Cell Adhesion Molecule/metabolism , Humans , Mice , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Proto-Oncogene Proteins c-met/metabolism , Xenograft Model Antitumor Assays
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5268-5273, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947046

ABSTRACT

Blindness caused by the eye diseases Retinitis-Pigmentosa and Age-Related-Macular-Degeneration leads to a degeneration of the photoreceptor layer while postsynaptic cells mostly stay intact. In this Paper a new concept for retinal implants is proposed. Instead of converting the incident light to a gray-scale picture with corresponding continuous-value stimulation levels, we here suggest to produce a binary image picture that only highlight edges in order to stimulate the retina solely at points which belong to an edge. An integrated test circuit is designed with a 130 nm BiCMOS process by using cellular neural networks for binary image generation. The circuit yields a simulated maximum rated power consumption of 2.61 mW for a 1000 information processing cells.


Subject(s)
Macular Degeneration , Retinitis Pigmentosa , Visual Prosthesis , Animals , Blindness , Macular Degeneration/therapy , Prostheses and Implants , Retina , Retinitis Pigmentosa/therapy
8.
PLoS One ; 11(9): e0162366, 2016.
Article in English | MEDLINE | ID: mdl-27588423

ABSTRACT

In systems biology, one of the major tasks is to tailor model complexity to information content of the data. A useful model should describe the data and produce well-determined parameter estimates and predictions. Too small of a model will not be able to describe the data whereas a model which is too large tends to overfit measurement errors and does not provide precise predictions. Typically, the model is modified and tuned to fit the data, which often results in an oversized model. To restore the balance between model complexity and available measurements, either new data has to be gathered or the model has to be reduced. In this manuscript, we present a data-based method for reducing non-linear models. The profile likelihood is utilised to assess parameter identifiability and designate likely candidates for reduction. Parameter dependencies are analysed along profiles, providing context-dependent suggestions for the type of reduction. We discriminate four distinct scenarios, each associated with a specific model reduction strategy. Iterating the presented procedure eventually results in an identifiable model, which is capable of generating precise and testable predictions. Source code for all toy examples is provided within the freely available, open-source modelling environment Data2Dynamics based on MATLAB available at http://www.data2dynamics.org/, as well as the R packages dMod/cOde available at https://github.com/dkaschek/. Moreover, the concept is generally applicable and can readily be used with any software capable of calculating the profile likelihood.


Subject(s)
Computer Simulation , Models, Biological , Software , Systems Biology/methods , Algorithms , Nonlinear Dynamics
9.
PLoS Comput Biol ; 11(4): e1004192, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25905717

ABSTRACT

Signaling pathways are characterized by crosstalk, feedback and feedforward mechanisms giving rise to highly complex and cell-context specific signaling networks. Dissecting the underlying relations is crucial to predict the impact of targeted perturbations. However, a major challenge in identifying cell-context specific signaling networks is the enormous number of potentially possible interactions. Here, we report a novel hybrid mathematical modeling strategy to systematically unravel hepatocyte growth factor (HGF) stimulated phosphoinositide-3-kinase (PI3K) and mitogen activated protein kinase (MAPK) signaling, which critically contribute to liver regeneration. By combining time-resolved quantitative experimental data generated in primary mouse hepatocytes with interaction graph and ordinary differential equation modeling, we identify and experimentally validate a network structure that represents the experimental data best and indicates specific crosstalk mechanisms. Whereas the identified network is robust against single perturbations, combinatorial inhibition strategies are predicted that result in strong reduction of Akt and ERK activation. Thus, by capitalizing on the advantages of the two modeling approaches, we reduce the high combinatorial complexity and identify cell-context specific signaling networks.


Subject(s)
Hepatocyte Growth Factor/metabolism , Hepatocytes/metabolism , Liver Regeneration/physiology , MAP Kinase Signaling System/physiology , Models, Biological , Phosphatidylinositol 3-Kinases/metabolism , Animals , Cells, Cultured , Computer Simulation , Mice , Proto-Oncogene Proteins c-akt/metabolism
10.
FEBS J ; 277(22): 4741-54, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20964804

ABSTRACT

Type I interferons (IFN) are important components of the innate antiviral response. A key signalling pathway activated by IFNα is the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Major components of the pathway have been identified. However, critical kinetic properties that facilitate accelerated initiation of intracellular antiviral signalling and thereby promote virus elimination remain to be determined. By combining mathematical modelling with experimental analysis, we show that control of dynamic behaviour is not distributed among several pathway components but can be primarily attributed to interferon regulatory factor 9 (IRF9), constituting a positive feedback loop. Model simulations revealed that increasing the initial IRF9 concentration reduced the time to peak, increased the amplitude and enhanced termination of pathway activation. These model predictions were experimentally verified by IRF9 over-expression studies. Furthermore, acceleration of signal processing was linked to more rapid and enhanced expression of IFNα target genes. Thus, the amount of cellular IRF9 is a crucial determinant for amplification of early dynamics of IFNα-mediated signal transduction.


Subject(s)
Immunity, Innate/immunology , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Interferon-alpha/metabolism , Models, Theoretical , Signal Transduction/physiology , Viruses/immunology , Animals , Cell Line , Gene Expression Regulation , Humans , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Interferon-alpha/genetics , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism
11.
PLoS Comput Biol ; 5(7): e1000440, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19609355

ABSTRACT

Transmembrane channel proteins play pivotal roles in maintaining the homeostasis and responsiveness of cells and the cross-membrane electrochemical gradient by mediating the transport of ions and molecules through biological membranes. Therefore, computational methods which, given a set of 3D coordinates, can automatically identify and describe channels in transmembrane proteins are key tools to provide insights into how they function.Herein we present PoreWalker, a fully automated method, which detects and fully characterises channels in transmembrane proteins from their 3D structures. A stepwise procedure is followed in which the pore centre and pore axis are first identified and optimised using geometric criteria, and then the biggest and longest cavity through the channel is detected. Finally, pore features, including diameter profiles, pore-lining residues, size, shape and regularity of the pore are calculated, providing a quantitative and visual characterization of the channel. To illustrate the use of this tool, the method was applied to several structures of transmembrane channel proteins and was able to identify shape/size/residue features representative of specific channel families. The software is available as a web-based resource at http://www.ebi.ac.uk/thornton-srv/software/PoreWalker/.


Subject(s)
Ion Channels/chemistry , Membrane Proteins/chemistry , Models, Chemical , Software , Algorithms , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL