Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Exerc Sci ; 33(1): 16-22, 2021 03 14.
Article in English | MEDLINE | ID: mdl-33721841

ABSTRACT

PURPOSE: To examine the influence of growth and maturation in the trajectory of stretch-shortening cycle capability. METHOD: Using a mixed-longitudinal design, absolute and relative leg stiffness and reactive strength index (RSI) were measured 3 times over a 3-year period in 44 youth team-sport players. Maturation was determined as maturity offset and included within the Bayesian inference analysis as a covariate alongside chronological age. RESULTS: Irrespective of age and maturation, there was no change in absolute leg stiffness, however relative leg stiffness decreased over time. Maturation and age reduced this decline, but the decline remained significant (Bayesian factor [10] = 5097, model averaged R2 = .61). The RSI increased over time and more so in older more mature youth players (Bayesian factor [10] = 9.29e8, model averaged R2 = .657). CONCLUSION: In youth players who are at/post peak height velocity, relative leg stiffness appears to decline, which could have an impact on both performance and injury risk. However, RSI increases during this period, and these data reinforce that leg stiffness and RSI reflect different components of stretch-shortening cycle capability. Practitioners should consider these differences when planning training to maximize stretch-shortening cycle capability during growth and maturation in athletes on the developmental performance pathway.


Subject(s)
Athletes , Leg/physiology , Muscle Contraction , Muscle, Skeletal/physiology , Adolescent , Bayes Theorem , Humans , Longitudinal Studies , Male , Muscle Strength , Team Sports , Youth Sports
2.
J Strength Cond Res ; 33(8): 2057-2065, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30985523

ABSTRACT

Stastny, P, Lehnert, M, De Ste Croix, M, Petr, M, Svoboda, Z, Maixnerova, E, Varekova, R, Botek, M, Petrek, M, Lenka, K, and Cieszczyk, P. Effect of COL5A1, GDF5, and PPARA genes on a movement screen and neuromuscular performance in adolescent team sport athletes. J Strength Cond Res 33(8): 2057-2065, 2019-The risk of injury increases with adolescents' chronological age and may be related to limited muscle function neuromuscular, genetic, and biomechanical factors. The purpose of this study was to determine whether COL5A1, PPARA, and GDF5 genes are associated with muscle functions and stretch-shortening cycle performance in adolescent athletes. One hundred forty-six youth players (14.4 ± 0.2 years) from various team sports (basketball n = 54, soccer n = 50, handball n = 32) underwent a manual test for muscle function, maturity estimation, functional bend test (FBT), passive straight leg raise (SLR) test, leg stiffness test, test of reactive strength index (RSI), and gene sampling for COL5A1, PPARA, and GDF5. The χ test did not show any differences in allele or genotype frequency between participants before and after peak height velocity. Multivariate analysis of variance showed that COL5A1 rs12722 CT heterozygotes had worse score in FBT (p < 0.001), worse score in SLR (p = 0.003), and lower maturity offset (p = 0.029, only in females) than TT homozygotes. Male GDF5 rs143383 GG homozygotes showed better score in SLR than AA and AG genotypes (p = 0.003), and AA and AG genotypes in both sex had greater RSI than GG homozygotes (p = 0.016). The PPARA rs4253778 CC homozygotes had greater RSI than GG and GC genotypes (p = 0.004). The CT genotype in COL5A1 rs12722 is possible predictor of functional movement disruption in the posterior hip muscle chain, causing shortening in FBT and SLR, which includes hamstrings function. CT genotype in COL5A1 rs12722 should be involved in programs targeting hamstring and posterior hip muscle chain.


Subject(s)
Athletes , Movement/physiology , Muscle, Skeletal/metabolism , Youth Sports/physiology , Adolescent , Biomechanical Phenomena , Body Weights and Measures , Collagen Type V/genetics , Cross-Sectional Studies , Female , Genotype , Growth Differentiation Factor 5/genetics , Humans , Male , Muscle Strength , PPAR alpha/genetics , Puberty/physiology , Sex Factors
3.
Eur J Sport Sci ; 19(8): 1130-1139, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30776255

ABSTRACT

Poor neuromuscular control and fatigue have been proposed as a risk factor for non-contact injuries especially around peak height velocity (PHV). This study explored the effects of competitive soccer match-play on neuromuscular performance and muscle damage in male youth soccer players. 24 youth players aged 13-16y were split into a PHV group (-0.5 to 0.5y) and post PHV group (1.0-2.5y) based on maturity off-set. Leg stiffness, reactive strength index (RSI), muscle activation, creatine kinase (CK), and muscle soreness were determined pre and post a competitive soccer match. Paired t-tests were used to explore differences pre and post competitive match play and independent sample t-tests for between groups differences for all outcome measures. There was no significant fatigue-related change in absolute and relative leg stiffness or muscle activation in both groups, except for the gastrocnemius in the post PHV group. RSI, CK and perceived muscle soreness were significantly different after soccer match-play in both groups with small to large effects observed (ES:0.41-2.82). There were no significant differences between the groups pre match-play except for absolute and relative leg stiffness (P < 0.001; ES = 1.16 and 0.63 respectively). No significant differences were observed in the fatigue related responses to competitive match play between groups except for perceived muscle soreness. The influence of competitive match-play on neuromuscular function and muscle damage is similar in male youth around the time of PHV and those post-PHV indicating that other factors must contribute to the heightened injury risk around PHV.


Subject(s)
Athletic Performance , Muscle Fatigue , Muscle, Skeletal/physiopathology , Myalgia/physiopathology , Soccer , Adolescent , Age Factors , Competitive Behavior , Creatine Kinase/blood , Humans , Male , Youth Sports
SELECTION OF CITATIONS
SEARCH DETAIL