Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
2.
Bone ; 152: 116072, 2021 11.
Article in English | MEDLINE | ID: mdl-34171514

ABSTRACT

Microstructural adaptation of bone in response to mechanical stimuli is diminished with estrogen deprivation. Here we tested in vivo whether ovariectomy (OVX) alters the acute response of osteocytes, the principal mechanosensory cells of bone, to mechanical loading in mice. We also used super resolution microscopy (Structured Illumination microscopy or SIM) in conjunction with immunohistochemistry to assess changes in the number and organization of "osteocyte mechanosomes" - complexes of Panx1 channels, P2X7 receptors and CaV3 voltage-gated Ca2+ channels clustered around αvß3 integrin foci on osteocyte processes. Third metatarsals bones of mice expressing an osteocyte-targeted genetically encoded Ca2+ indicator (DMP1-GCaMP3) were cyclically loaded in vivo to strains from 250 to 3000 µÎµ and osteocyte intracellular Ca2+ signaling responses were assessed in mid-diaphyses using multiphoton microscopy. The number of Ca2+ signaling osteocytes in control mice increase monotonically with applied strain magnitude for the physiological range of strains. The relationship between the number of Ca2+ signaling osteocytes and loading was unchanged at 2 days post-OVX. However, it was altered markedly at 28 days post-OVX. At loads up to 1000 µÎµ, there was a dramatic reduction in number of responding (i.e. Ca2+ signaling) osteocytes; however, at higher strains the numbers of Ca2+ signaling osteocytes were similar to control mice. OVX significantly altered the abundance, make-up and organization of osteocyte mechanosome complexes on dendritic processes. Numbers of αvß3 foci also staining with either Panx 1, P2X7R or CaV3 declined by nearly half after OVX, pointing to a loss of osteocyte mechanosomes on the dendritic processes with estrogen depletion. At the same time, the areas of the remaining foci that stained for αvß3 and channel proteins increased significantly, a redistribution of mechanosome components suggesting a potential compensatory response. These results demonstrate that the deleterious effects of estrogen depletion on skeletal mechanical adaptation appear at the level of mechanosensation; osteocytes lose the ability to sense small (physiological) mechanical stimuli. This decline may result at least partly from changes in the structure and organization of osteocyte mechanosomes, which contribute to the distinctive sensitivity of osteocytes (particularly their dendritic processes) to mechanical stimulation.


Subject(s)
Calcium Signaling , Osteocytes , Animals , Bone and Bones , Connexins , Estrogens , Female , Mice , Nerve Tissue Proteins , Ovariectomy , Stress, Mechanical
3.
JBMR Plus ; 5(4): e10476, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33869992

ABSTRACT

Bisphosphonates (BPs) are a mainstay of osteoporosis treatment; however, concerns about bone health based on oversuppression of remodeling remain. Long-term bone remodeling suppression adversely affects bone material properties with microdamage accumulation and reduced fracture toughness in animals and increases in matrix mineralization and atypical femur fractures in patients. Although a "drug holiday" from BPs to restore remodeling and improve bone quality seems reasonable, clinical BPs have long functional half-lives because of their high hydroxyapatite (HAP) binding affinities. This places a practical limit on the reversibility and effectiveness of a drug holiday. BPs with low HAP affinity and strong osteoclast inhibition potentially offer an alternative approach; their antiresorptive effect should reverse rapidly when dosing is discontinued. This study tested this concept using NE-58025, a BP with low HAP affinity and moderate osteoclast inhibition potential. Young adult female C57Bl/6 mice were ovariectomized (OVX) and treated with NE-58025, risedronate, or PBS vehicle for 3 months to test effectiveness in preventing long-term bone loss. Bone microarchitecture, histomorphometry, and whole-bone mechanical properties were assessed. To test reversibility, OVX mice were similarly treated for 3 months, treatment was stopped, and bone was assessed up to 3 months post-treatment. NE-58025 and RIS inhibited long-term OVX-induced bone loss, but NE-58025 antiresorptive effects were more pronounced. Withdrawing NE-58025 treatment led to the rapid onset of trabecular resorption with a 200% increase in osteoclast surface and bone loss within 1 month. Cessation of risedronate treatment did not lead to increases in resorption indices or bone loss. These results show that NE-58025 prevents OVX-induced bone loss, and its effects reverse quickly following cessation treatment in vivo. Low-HAP affinity BPs may have use as reversible, antiresorptive agents with a rapid on/off profile, which may be useful for maintaining bone health with long-term BP treatment. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

4.
J Bone Miner Res ; 35(5): 966-977, 2020 05.
Article in English | MEDLINE | ID: mdl-31910292

ABSTRACT

Localized apoptosis of osteocytes, the tissue-resident cells within bone, occurs with fatigue microdamage and activates bone resorption. Osteoclasts appear to target and remove dying osteocytes, resorbing damaged bone matrix as well. Osteocyte apoptosis similarly activates bone resorption with estrogen loss and in disuse. Apoptotic osteocytes trigger viable neighbor (ie, bystander) osteocytes to produce RANKL, the cytokine required for osteoclast activation. Signals from apoptotic osteocytes that trigger this bystander RANKL expression remain obscure. Studying signaling among osteocytes has been hampered by lack of in vitro systems that model the limited communication among osteocytes in vivo (ie, via gap junctions on cell processes and/or paracrine signals through thin pericellular fluid spaces around osteocytes). Here, we used a novel multiscale fluidic device (the Macro-micro-nano, or Mµn) that reproduces these key anatomical features. Osteocytes in discrete compartments of the device communicate only via these limited pathways, which allows assessment of their roles in triggering osteocytes RANKL expression. Apoptosis of MLOY-4 osteocytes in the Mµn device caused increased osteocyte RANKL expression in the neighboring compartment, consistent with in vivo findings. This RANKL upregulation in bystander osteocytes was prevented by blocking Pannexin 1 channels as well as its ATP receptor. ATP alone caused comparable RANKL upregulation in bystander osteocytes. Finally, blocking Connexin 43 gap junctions did not abolish osteocyte RANKL upregulation, but did alter the distribution of RANKL expressing bystander osteocytes. These findings point to extracellular ATP, released from apoptotic osteocytes via Panx1 channels, as a major signal for triggering bystander osteocyte RANKL expression and activating bone remodeling. © 2020 American Society for Bone and Mineral Research.


Subject(s)
Apoptosis , Bone Resorption , Osteocytes , RANK Ligand/metabolism , Animals , Bone Remodeling , Cell Line , Connexins , Mice , Nerve Tissue Proteins , Osteoclasts , Signal Transduction
5.
Cells ; 8(10)2019 10 22.
Article in English | MEDLINE | ID: mdl-31652654

ABSTRACT

Regenerative retinal therapies have introduced progenitor cells to replace dysfunctional or injured neurons and regain visual function. While contemporary cell replacement therapies have delivered retinal progenitor cells (RPCs) within customized biomaterials to promote viability and enable transplantation, outcomes have been severely limited by the misdirected and/or insufficient migration of transplanted cells. RPCs must achieve appropriate spatial and functional positioning in host retina, collectively, to restore vision, whereas movement of clustered cells differs substantially from the single cell migration studied in classical chemotaxis models. Defining how RPCs interact with each other, neighboring cell types and surrounding extracellular matrixes are critical to our understanding of retinogenesis and the development of effective, cell-based approaches to retinal replacement. The current article describes a new bio-engineering approach to investigate the migratory responses of innate collections of RPCs upon extracellular substrates by combining microfluidics with the well-established invertebrate model of Drosophila melanogaster. Experiments utilized microfluidics to investigate how the composition, size, and adhesion of RPC clusters on defined extracellular substrates affected migration to exogenous chemotactic signaling. Results demonstrated that retinal cluster size and composition influenced RPC clustering upon extracellular substrates of concanavalin (Con-A), Laminin (LM), and poly-L-lysine (PLL), and that RPC cluster size greatly altered collective migratory responses to signaling from Fibroblast Growth Factor (FGF), a primary chemotactic agent in Drosophila. These results highlight the significance of examining collective cell-biomaterial interactions on bio-substrates of emerging biomaterials to aid directional migration of transplanted cells. Our approach further introduces the benefits of pairing genetically controlled models with experimentally controlled microenvironments to advance cell replacement therapies.


Subject(s)
Microfluidic Analytical Techniques , Models, Biological , Regeneration , Retina/physiology , Stem Cells/metabolism , Animals , Drosophila melanogaster , Retina/cytology , Stem Cells/cytology
6.
Ann N Y Acad Sci ; 1442(1): 128-137, 2019 04.
Article in English | MEDLINE | ID: mdl-30891766

ABSTRACT

Osteoarthritis (OA) pathogenesis is mediated largely through the actions of proteolytic enzymes such as matrix metalloproteinase (MMP) 13. The transcriptional regulator CITED2, which suppresses the expression of MMP13 in chondrocytes, is induced by interleukin (IL)-4 in T cells and macrophages, and by moderate mechanical loading in chondrocytes. We tested the hypothesis that CITED2 mediates cross-talk between IL-4 signaling and mechanical loading-induced pathways that result in chondroprotection, at least in part, by downregulating MMP13. IL-4 induced CITED2 gene expression in human chondrocytes in a dose- and time-dependent manner through JAK/STAT signaling. Mechanical loading combined with IL-4 resulted in additive effects on inducing CITED2 expression and downregulating of MMP13 in human chondrocytes in vitro. In vivo, IL-4 gene knockout (KO) mice exhibited reduced basal levels of CITED2 expression in chondrocytes. While moderate treadmill running induced CITED2 expression and reduced MMP13 expression in wild-type mice, these effects were blunted (for CITED2) or abolished (for MMP13) in chondrocytes of IL-4 gene KO mice. Moreover, intra-articular injections of mouse recombinant IL-4 combined with regular cage activity mitigated post-traumatic OA to a greater degree compared to immobilized mice treated with IL-4 alone. These data suggest that using moderate loading to enhance IL-4 may be a potential therapeutic strategy for chondroprotection in OA.


Subject(s)
Cartilage, Articular/pathology , Interleukin-4/metabolism , Repressor Proteins/physiology , Stress, Mechanical , Trans-Activators/physiology , Animals , Cell Line, Transformed , Humans , Interleukin-4/genetics , Male , Matrix Metalloproteinase 13/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout
7.
Ann N Y Acad Sci ; 1442(1): 153-164, 2019 04.
Article in English | MEDLINE | ID: mdl-30891782

ABSTRACT

Adipokines secreted from the infrapatellar fat pad (IPFP), such as adipsin and adiponectin, have been implicated in osteoarthritis pathogenesis. CITED2, a mechanosensitive transcriptional regulator with chondroprotective activity, may modulate their expression. Cited2 haploinsufficient mice (Cited2+/- ) on a high-fat diet (HFD) exhibited increased body weight and increased IPFP area compared to wild-type (WT) mice on an HFD. While an exercise regimen of moderate treadmill running induced the expression of CITED2, as well as PGC-1α, and reduced the expression of adipsin and adiponectin in the IPFP of WT mice on an HFD, Cited2 haploinsufficiency abolished the loading-induced expression of PGC-1α and loading-induced suppression of adipsin and adiponectin. Furthermore, knocking down or knocking out CITED2 in adipose stem cells (ASCs)/preadipocytes derived from the IPFP in vitro led to the increased expression of adipsin and adiponectin and reduced PGC-1α, and abolished the loading-induced suppression of adipsin and adiponectin and loading-induced expression of PGC-1α. Overexpression of PGC-1α in these ASC/preadipocytes reversed the effects caused by CITED2 deficiency. The current data suggest that CITED2 is a critical regulator in physiologic loading-induced chondroprotection in the context of an HFD and PGC-1α is required for the inhibitory effects of CITED2 on the expression of adipokines such as adipsin and adiponectin in the IPFP.


Subject(s)
Adipokines/metabolism , Adipose Tissue/metabolism , Patella/metabolism , Repressor Proteins/physiology , Stress, Mechanical , Trans-Activators/physiology , Animals , Diet, High-Fat , Female , Haploinsufficiency , Male , Mice , Mice, Knockout , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Physical Conditioning, Animal , RNA, Messenger/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
10.
Exp Eye Res ; 173: 129-137, 2018 08.
Article in English | MEDLINE | ID: mdl-29753729

ABSTRACT

Emerging therapies have begun to evaluate the abilities of Müller glial cells (MGCs) to protect and/or regenerate neurons following retina injury. The migration of donor cells is central to many reparative strategies, where cells must achieve appropriate positioning to facilitate localized repair. Although chemical cues have been implicated in the MGC migratory responses of numerous retinopathies, MGC-based therapies have yet to explore the extent to which external biochemical stimuli can direct MGC behavior. The current study uses a microfluidics-based assay to evaluate the migration of cultured rMC-1 cells (as model MGC) in response to quantitatively-controlled microenvironments of signaling factors implicated in retinal regeneration: basic Fibroblast Growth factor (bFGF or FGF2); Fibroblast Growth factor 8 (FGF8); Vascular Endothelial Growth Factor (VEGF); and Epidermal Growth Factor (EGF). Findings indicate that rMC-1 cells exhibited minimal motility in response to FGF2, FGF8 and VEGF, but highly-directional migration in response to EGF. Further, the responses were blocked by inhibitors of EGF-R and of the MAPK signaling pathway. Significantly, microfluidics data demonstrate that changes in the EGF gradient (i.e. change in EGF concentration over distance) resulted in the directional chemotactic migration of the cells. By contrast, small increases in EGF concentration, alone, resulted in non-directional cell motility, or chemokinesis. This microfluidics-enhanced approach, incorporating the ability both to modulate and asses the responses of motile donor cells to a range of potential chemotactic stimuli, can be applied to potential donor cell populations obtained directly from human specimens, and readily expanded to incorporate drug-eluting biomaterials and combinations of desired ligands.


Subject(s)
Chemotaxis/physiology , Ependymoglial Cells/physiology , Animals , Cell Proliferation/physiology , Cells, Cultured , Cellular Microenvironment , Ependymoglial Cells/drug effects , Epidermal Growth Factor/pharmacology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Erlotinib Hydrochloride/pharmacology , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 8/pharmacology , Glial Fibrillary Acidic Protein/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Microfluidic Analytical Techniques , Nestin/metabolism , Protein Kinase Inhibitors/pharmacology , RNA, Messenger/genetics , Rats , Real-Time Polymerase Chain Reaction , Receptors, Growth Factor/genetics , Vascular Endothelial Growth Factor A/pharmacology
11.
J Tissue Eng ; 9: 2041731417751286, 2018.
Article in English | MEDLINE | ID: mdl-29344334

ABSTRACT

Strategies to replace retinal photoreceptors lost to damage or disease rely upon the migration of replacement cells transplanted into sub-retinal spaces. A significant obstacle to the advancement of cell transplantation for retinal repair is the limited migration of transplanted cells into host retina. In this work, we examine the adhesion and displacement responses of retinal progenitor cells on extracellular matrix substrates found in retina as well as widely used in the design and preparation of transplantable scaffolds. The data illustrate that retinal progenitor cells exhibit unique adhesive and displacement dynamics in response to poly-l-lysine, fibronectin, laminin, hyaluronic acid, and Matrigel. These findings suggest that transplantable biomaterials can be designed to improve cell integration by incorporating extracellular matrix substrates that affect the migratory behaviors of replacement cells.

12.
J Orthop Res ; 36(2): 642-652, 2018 02.
Article in English | MEDLINE | ID: mdl-29087614

ABSTRACT

Osteocyte processes are an order of magnitude more sensitive to mechanical loading than their cell bodies. The mechanisms underlying this remarkable mechanosensitivity are not clear, but may be related to the infrequent αV ß3 integrin sites where the osteocyte cell processes attach to canalicular walls. These sites develop dramatically elevated strains during load-induced fluid flow in the lacunar-canalicular system and were recently shown to be primary sites for osteocyte-like MLO-Y4 cell mechanotransduction. These αV ß3 integrin sites lack typical integrin transduction mechanisms. Rather, stimulation at these sites alters Ca2+ signaling, ATP release and membrane potential. In the current studies, we tested the hypothesis that in authentic osteocytes in situ, key membrane proteins implicated in osteocyte mechanotransduction are preferentially localized at or near to ß3 integrin-foci. We analyzed these spatial relationships in mouse bone osteocytes using immunohistochemistry combined with Structured Illumination Super Resolution Microscopy, a method that permits structural resolution at near electron microscopy levels in tissue sections. We discovered that the purinergic channel pannexin1, the ATP-gated purinergic receptor P2 × 7R and the low voltage transiently opened T-type calcium channel CaV3.2-1 all reside in close proximity to ß3 integrin attachment foci on osteocyte processes, suggesting a specialized mechanotransduction complex at these sites. We further confirmed this observation on isolated osteocytes in culture using STochasitc Optical Resonance Microscopy. These findings identify a possible structural basis for the unique mechanosensation and transduction capabilities of the osteocyte process. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:642-652, 2018.


Subject(s)
Calcium Channels, T-Type/metabolism , Connexins/metabolism , Integrin beta3/metabolism , Mechanotransduction, Cellular , Nerve Tissue Proteins/metabolism , Osteocytes/physiology , Animals , Cell Line , Male , Mice, Inbred C57BL , Receptors, Purinergic/metabolism
13.
Proc Natl Acad Sci U S A ; 114(44): 11775-11780, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29078317

ABSTRACT

Osteocytes are considered to be the major mechanosensory cells of bone, but how osteocytes in vivo process, perceive, and respond to mechanical loading remains poorly understood. Intracellular calcium (Ca2+) signaling resulting from mechanical stimulation has been widely studied in osteocytes in vitro and in bone explants, but has yet to be examined in vivo. This is achieved herein by using a three-point bending device which is capable of delivering well-defined mechanical loads to metatarsal bones of living mice while simultaneously monitoring the intracellular Ca2+ responses of individual osteocytes by using a genetically encoded fluorescent Ca2+ indicator. Osteocyte responses are imaged by using multiphoton fluorescence microscopy. We investigated the in vivo responses of osteocytes to strains ranging from 250 to 3,000 [Formula: see text] and frequencies from 0.5 to 2 Hz, which are characteristic of physiological conditions reported for bone. At all loading frequencies examined, the number of responding osteocytes increased strongly with applied strain magnitude. However, Ca2+ intensity within responding osteocytes did not change significantly with physiological loading magnitudes. Our studies offer a glimpse into how these critical bone cells respond to mechanical load in vivo, as well as provide a technique to determine how the cells encode magnitude and frequency of loading.


Subject(s)
Calcium/metabolism , Osteocytes/metabolism , Osteocytes/physiology , Signal Transduction/physiology , Animals , Bone and Bones/metabolism , Bone and Bones/physiology , Mice , Mice, Inbred C57BL
14.
Biomed Microdevices ; 19(3): 71, 2017 Aug 08.
Article in English | MEDLINE | ID: mdl-28791515

ABSTRACT

Many cell types communicate by means of dendritic extensions via a multi-tiered set of geometric and chemical cues. Until recently, mimicking the compartmentalized in vivo cellular environment of dendrite-expressing cells such as osteocytes and motor neurons in a spatially and temporally controllable manner was limited by the challenges of in vitro device fabrication at submicron scales. Utilizing the improved resolution of current fabrication technology, we have designed a multiscale device, the Macro-micro-nano system, or Mµn, composed of two distinct cell-seeding and interrogation compartments separated by a nanochannel array. The array enables dendrite ingrowth, while providing a mechanism for fluidic sequestration and/or temporally-mediated diffusible signaling between cell populations. Modeling of the Mµn system predicted the ability to isolate diffusible signals, namely ATP. Empirical diffusion studies verified computational modeling. In addition, cell viability, dendrite interaction with the nanoarray, and cellular purinergic response to heat shock were experimentally evaluated within the device for both osteocytes and motor neurons. Our results describe a novel in vitro system in which dendrite-expressing cell types can be studied within nano-environments that mimic in vivo conditions. In particular, the Mµn system enables real-time observation of cell to cell communication between cell populations in distinct, but fluidically coupled regions.


Subject(s)
Cell Communication , Dendritic Cells/cytology , Lab-On-A-Chip Devices , Cell Line , Dendritic Cells/metabolism , Microscopy, Fluorescence , Osteocytes/cytology , Paracrine Communication , Receptors, Purinergic P2/metabolism
15.
Cell Adh Migr ; 11(1): 1-12, 2017 01 02.
Article in English | MEDLINE | ID: mdl-26744909

ABSTRACT

Central nervous system (CNS) cells cultured in vitro as neuroclusters are useful models of tissue regeneration and disease progression. However, the role of cluster formation and collective migration of these neuroclusters to external stimuli has been largely unstudied in vitro. Here, 3 distinct CNS cell types, medulloblastoma (MB), medulloblastoma-derived glial progenitor cells (MGPC), and retinal progenitor cells (RPC), were examined with respect to cluster formation and migration in response to Stromal-Derived Growth Factor (SDF-1). A microfluidic platform was used to distinguish collective migration of neuroclusters from that of individual cells in response to controlled concentration profiles of SDF-1. Cell lines were also compared with respect to expression of CXCR4, the receptor for SDF-1, and the gap junction protein Connexin 43 (Cx43). All cell types spontaneously formed clusters and expressed both CXCR4 and Cx43. RPC clusters exhibited collective chemotactic migration (i.e. movement as clusters) along SDF-1 concentration gradients. MGPCs clusters did not exhibit adhesion-based migration, and migration of MB clusters was inconsistent. This study demonstrates how controlled microenvironments can be used to examine the formation and collective migration of CNS-derived neuroclusters in varied cell populations.


Subject(s)
Cell Movement/drug effects , Chemokine CXCL12/pharmacology , Lab-On-A-Chip Devices , Neurons/cytology , Cell Aggregation/drug effects , Cell Size/drug effects , Cells, Cultured , Chemotaxis/drug effects , Connexin 43/metabolism , Humans , Immunohistochemistry , Medulloblastoma/pathology , Neuroglia/drug effects , Neuroglia/metabolism , Neurons/drug effects , Neurons/metabolism , Receptors, CXCR4/metabolism , Single-Cell Analysis , Stem Cells/drug effects , Stem Cells/metabolism , Time Factors
16.
J Bone Miner Res ; 32(4): 688-697, 2017 04.
Article in English | MEDLINE | ID: mdl-27859586

ABSTRACT

Osteocytes can remove and remodel small amounts of their surrounding bone matrix through osteocytic osteolysis, which results in increased volume occupied by lacunar and canalicular space (LCS). It is well established that cortical bone stiffness and strength are strongly and inversely correlated with vascular porosity, but whether changes in LCS volume caused by osteocytic osteolysis are large enough to affect bone mechanical properties is not known. In the current studies we tested the hypotheses that (1) lactation and postlactation recovery in mice alter the elastic modulus of bone tissue, and (2) such local changes in mechanical properties are related predominantly to alterations in lacunar and canalicular volume rather than bone matrix composition. Mechanical testing was performed using microindentation to measure modulus in regions containing solely osteocytes and no vascular porosity. Lactation caused a significant (∼13%) reduction in bone tissue-level elastic modulus (p < 0.001). After 1 week postweaning (recovery), bone modulus levels returned to control levels and did not change further after 4 weeks of recovery. LCS porosity tracked inversely with changes in cortical bone modulus. Lacunar and canalicular void space increased 7% and 15% with lactation, respectively (p < 0.05), then returned to control levels at 1 week after weaning. Neither bone mineralization (assessed by high-resolution backscattered scanning electron microscopy) nor mineral/matrix ratio or crystallinity (assessed by Raman microspectroscopy) changed with lactation. Thus, changes in bone mechanical properties induced by lactation and recovery appear to depend predominantly on changes in osteocyte LCS dimensions. Moreover, this study demonstrates that tissue-level cortical bone mechanical properties are rapidly and reversibly modulated by osteocytes in response to physiological challenge. These data point to a hitherto unappreciated role for osteocytes in modulating and maintaining local bone mechanical properties. © 2016 American Society for Bone and Mineral Research.


Subject(s)
Bone Density/physiology , Bone and Bones/metabolism , Elastic Modulus , Lactation/physiology , Osteocytes/metabolism , Osteolysis/metabolism , Animals , Bone and Bones/cytology , Cell Size , Female , Mice , Osteocytes/cytology
17.
Bone ; 90: 15-22, 2016 09.
Article in English | MEDLINE | ID: mdl-27260646

ABSTRACT

Metabolic oxidative stress has been implicated as a cause of osteocyte apoptosis, an essential step in triggering bone remodeling. However, little is known about the oxidative behavior of osteocytes in vivo. We assessed the redox status and distribution of total and active mitochondria in osteocytes of mouse metatarsal cortical bone in situ. Multiphoton microscopy (MPM) was used to measure fluorescence of reduced pyridine nucleotides (NADH) under normoxic conditions and acutely following extreme (postmortem) hypoxic stress. Under non-hypoxic conditions, osteocytes exhibited no detectable fluorescence, indicating rapid NADH re-oxidation. With hypoxia, NADH levels peaked and returned to near baseline levels over 3h. Cells near the periosteal surface reached maximum NADH levels twice as rapidly as osteocytes near the mid-cortex, due to the time required to initiate NADH accumulation; once started, NADH accumulation followed a similar exponential relationship at all sites. Osteocytes near periosteal and endosteal bone surfaces also had higher mitochondrial content than those in mid-cortex based on immunohistochemical staining for mitochondrial ATPase-5A (Complex V ATPase). The content of active mitochondria, assessed in situ using the potentiometric dye TMRM, was also high in osteocytes near periosteum, but low in osteocytes near endocortical surfaces, similar to levels in mid-cortex. These results demonstrate that cortical osteocytes maintain normal oxidative status utilizing mainly aerobic (mitochondrial) pathways but respond to hypoxic stress differently depending on their location in the cortex, a difference linked to mitochondrial content. An apparently high proportion of poorly functional mitochondria in osteocytes near endocortical surfaces, where increased apoptosis mainly occurs in response to bone remodeling stimuli, further suggest that regional differences in oxidative function may in part determine osteocyte susceptibility to undergo apoptosis in response to stimuli that trigger bone remodeling.


Subject(s)
Cortical Bone/cytology , Mitochondria/metabolism , Osteocytes/metabolism , Adenosine Triphosphatases/metabolism , Animals , Bone Matrix/metabolism , Cell Hypoxia , Female , Mice, Inbred C57BL , Microscopy, Fluorescence, Multiphoton , NAD/metabolism , Oxidation-Reduction , Rhodamines/metabolism , Time Factors
18.
J Bone Miner Res ; 31(7): 1356-65, 2016 07.
Article in English | MEDLINE | ID: mdl-26852281

ABSTRACT

Osteocyte apoptosis is essential to activate bone remodeling in response to fatigue microdamage and estrogen withdrawal, such that apoptosis inhibition in vivo prevents the onset of osteoclastic resorption. Osteocyte apoptosis has also been spatially linked to bone resorption owing to disuse, but whether apoptosis plays a similar controlling role is unclear. We, therefore, 1) evaluated the spatial and temporal effects of disuse from hindlimb unloading (HLU) on osteocyte apoptosis, receptor activator of NF-κB ligand (RANKL) expression, bone resorption, and loss in mouse femora, and 2) tested whether osteocyte apoptosis was required to activate osteoclastic activity in cortical and trabecular bone by treating animals subjected to HLU with the pan-caspase apoptosis inhibitor, QVD (quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methylketone). Immunohistochemistry was used to identify apoptotic and RANKL-producing osteocytes in femoral diaphysis and distal trabecular bone, and µCT was used to determine the extent of trabecular bone loss owing to HLU. In both cortical and trabecular bone, 5 days of HLU increased osteocyte apoptosis significantly (3- and 4-fold, respectively, p < 0.05 versus Ctrl). At day 14, the apoptotic osteocyte number in femoral cortices declined to near control levels but remained elevated in trabeculae (3-fold versus Ctrl, p < 0.05). The number of osteocytes producing RANKL in both bone compartments was also significantly increased at day 5 of HLU (>1.5-fold versus Ctrl, p < 0.05) and further increased by day 14. Increases in osteocyte apoptosis and RANKL production preceded increases in bone resorption at both endocortical and trabecular surfaces. QVD completely inhibited not only the HLU-triggered increases in osteocyte apoptosis but also RANKL production and activation of bone resorption at both sites. Finally, µCT studies revealed that apoptosis inhibition completely prevented the trabecular bone loss caused by HLU. Together these data indicate that osteocyte apoptosis plays a central and controlling role in triggering osteocyte RANKL production and the activation of new resorption leading to bone loss in disuse. © 2016 American Society for Bone and Mineral Research.


Subject(s)
Apoptosis , Bone Resorption/metabolism , Cancellous Bone/metabolism , Cortical Bone/metabolism , Femur/metabolism , Hindlimb Suspension , Osteocytes/metabolism , RANK Ligand/biosynthesis , Animals , Bone Resorption/diagnostic imaging , Cancellous Bone/diagnostic imaging , Cortical Bone/diagnostic imaging , Femur/diagnostic imaging , Male , Mice , Osteocytes/pathology , X-Ray Microtomography
19.
J Bone Miner Res ; 31(4): 890-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26553756

ABSTRACT

Osteocyte apoptosis is required to induce intracortical bone remodeling after microdamage in animal models, but how apoptotic osteocytes signal neighboring "bystander" cells to initiate the remodeling process is unknown. Apoptosis has been shown to open pannexin-1 (Panx1) channels to release adenosine diphosphate (ATP) as a "find-me" signal for phagocytic cells. To address whether apoptotic osteocytes use this signaling mechanism, we adapted the rat ulnar fatigue-loading model to reproducibly introduce microdamage into mouse cortical bone and measured subsequent changes in osteocyte apoptosis, receptor activator of NF-κB ligand (RANKL) expression and osteoclastic bone resorption in wild-type (WT; C57Bl/6) mice and in mice genetically deficient in Panx1 (Panx1KO). Mouse ulnar loading produced linear microcracks comparable in number and location to the rat model. WT mice showed increased osteocyte apoptosis and RANKL expression at microdamage sites at 3 days after loading and increased intracortical remodeling and endocortical tunneling at day 14. With fatigue, Panx1KO mice exhibited levels of microdamage and osteocyte apoptosis identical to WT mice. However, they did not upregulate RANKL in bystander osteocytes or initiate resorption. Panx1 interacts with P2X7 R in ATP release; thus, we examined P2X7 R-deficient mice and WT mice treated with P2X7 R antagonist Brilliant Blue G (BBG) to test the possible role of ATP as a find-me signal. P2X7 RKO mice failed to upregulate RANKL in osteocytes or induce resorption despite normally elevated osteocyte apoptosis after fatigue loading. Similarly, treatment of fatigued C57Bl/6 mice with BBG mimicked behavior of both Panx1KO and P2X7 RKO mice; BBG had no effect on osteocyte apoptosis in fatigued bone but completely prevented increases in bystander osteocyte RANKL expression and attenuated activation of resorption by more than 50%. These results indicate that activation of Panx1 and P2X7 R are required for apoptotic osteocytes in fatigued bone to trigger RANKL production in neighboring bystander osteocytes and implicate ATP as an essential signal mediating this process.


Subject(s)
Apoptosis , Bystander Effect , Connexins/metabolism , Nerve Tissue Proteins/metabolism , Osteocytes/metabolism , RANK Ligand/metabolism , Receptors, Purinergic P2X7/metabolism , Animals , Connexins/genetics , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Osteocytes/pathology , RANK Ligand/genetics , Rats , Receptors, Purinergic P2X7/genetics
20.
Sci Rep ; 5: 13149, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26289033

ABSTRACT

Mesenchymal stem cells (MSCs) are pluripotent cells that primarily differentiate into osteocytes, chondrocytes, and adipocytes. Recent studies indicate that MSCs can also be induced to generate tenocyte-like cells; moreover, MSCs have been suggested to have great therapeutic potential for tendon pathologies. Yet the precise molecular cascades governing tenogenic differentiation of MSCs remain unclear. We demonstrate scleraxis, a transcription factor critically involved in embryonic tendon development and formation, plays a pivotal role in the fate determination of MSC towards tenocyte differentiation. Using murine C3H10T1/2 pluripotent stem cells as a model system, we show scleraxis is extensively expressed in the early phase of bone morphogenetic protein (BMP)-12-triggered tenocytic differentiation. Once induced, scleraxis directly transactivates tendon lineage-related genes such as tenomodulin and suppresses osteogenic, chondrogenic, and adipogenic capabilities, thus committing C3H10T1/2 cells to differentiate into the specific tenocyte-like lineage, while eliminating plasticity for other lineages. We also reveal that mechanical loading-mediated tenocytic differentiation follows a similar pathway and that BMP-12 and cyclic uniaxial strain act in an additive fashion to augment the maximal response by activating signal transducer Smad8. These results provide critical insights into the determination of multipotent stem cells to the tenocyte lineage induced by both chemical and physical signals.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Cell Lineage , Mesenchymal Stem Cells/cytology , Tendons/cytology , Animals , Bone Morphogenetic Proteins/pharmacology , Cell Differentiation/drug effects , Cell Line , Cell Lineage/drug effects , Gene Knockdown Techniques , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mesenchymal Stem Cells/drug effects , Mice , Signal Transduction/drug effects , Smad8 Protein/metabolism , Transcriptional Activation/genetics , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL