Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Chem Mater ; 35(23): 10228-10237, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38107190

ABSTRACT

The growing interest in the use of near-infrared (NIR) radiation for spectroscopy, optical communication, and medical applications spanning both NIR-I (700-900 nm) and NIR-II (900-1700 nm) has driven the need for new NIR light sources. NIR phosphor-converted light-emitting diodes (pc-LEDs) are expected to replace traditional lamps mainly due to their high efficiency and compact design. Broadband NIR phosphors activated by Cr3+ and Cr4+ have attracted significant research interest, offering emission across a wide range from 700 to 1700 nm. In this work, we synthesized a series of Sc2(1-x)Ga2xO3:Cr3+/4+ materials (x = 0-0.2) with broadband NIR-I (Cr3+) and NIR-II (Cr4+) emission. We observed a substantial increase in the intensity of Cr3+ (approximately 77 times) by incorporating Ga3+ ions. Additionally, our investigation revealed that energy transfer occurred between Cr3+ and Cr4+ ions. Configuration diagrams are presented to elucidate the behavior of Cr3+ and Cr4+ ions within the Sc2O3 matrix. We also observed a phase transition at a pressure of 20.2 GPa, resulting in a new unknown phase where Cr3+ luminescence exhibited a high-symmetry environment. Notably, this study presents the pressure-induced shift of NIR Cr4+ luminescence in Sc2(1-x)Ga2xO3:Cr3+/4+. The linear shifts were estimated at 83 ± 3 and 61 ± 6 cm-1/GPa before and after the phase transition. Overall, our findings shed light on the synthesis, luminescent properties, temperature, and high-pressure behavior within the Sc2(1-x)Ga2xO3:Cr3+/4+ materials. This research contributes to the understanding and potential applications of these materials in the development of efficient NIR light sources and other optical devices.

2.
ACS Appl Mater Interfaces ; 15(42): 49379-49389, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37842834

ABSTRACT

Cr-doped inorganic materials are pivotal in developing near-infrared optical materials; however, multivalent Cr ions and their respective distribution in the materials remain ambiguous. Herein, a series of Li(Sc1-xInx)O2:Cr phosphors containing both Cr3+/Cr6+ ions are prepared. High-resolution synchrotron X-ray diffraction (XRD) reveals two similar phases in Li(Sc1-xInx)O2. Raman spectra further confirm distinct scattering patterns for the two end-member compositions, corroborating the findings from the synchrotron XRD analysis. Cr K-edge X-ray absorption near-edge structure and extended X-ray absorption fine structure demonstrate that most Cr ions in the as-prepared samples are Cr6+, while Cr3+ becomes dominant after washing with water. Moreover, the source and distribution of Cr3+ and Cr6+ ions in the as-prepared and washed samples are revealed through X-ray fluorescence and X-ray excited optical luminescence techniques, which indicate that Cr6+ ions aggregate within the sample, while Cr3+ ions are evenly distributed. Photoluminescence, decay curves, and line shape analyses are implemented to resolve the electron-lattice interactions, and the corresponding mechanisms are provided to explain the asymmetry between photoluminescence and photoluminescence excitation spectra. Overall, this study provides valuable insights into the distribution of low-concentration multivalence ions in solid-state materials and offers a deeper understanding of the approaches to precisely resolve the subtle changes in the crystal structure.

3.
Materials (Basel) ; 16(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36902985

ABSTRACT

This research focuses on LPE growth, and the examination of the optical and photovoltaic properties of single crystalline film (SCF) phosphors based on Ce3+-doped Y3MgxSiyAl5-x-yO12 garnets with Mg and Si contents in x = 0-0.345 and y = 0-0.31 ranges. The absorbance, luminescence, scintillation, and photocurrent properties of Y3MgxSiyAl5-x-yO12:Ce SCFs were examined in comparison with Y3Al5O12:Ce (YAG:Ce) counterpart. Especially prepared YAG:Ce SCFs with a low (x, y < 0.1) concentration of Mg2+ and Mg2+-Si4+ codopants also showed a photocurrent that increased with rising Mg2+ and Si4+ concentrations. Mg2+ excess was systematically present in as-grown Y3MgxSiyAl5-x-yO12:Ce SCFs. The as-grown SCFs of these garnets under the excitation of α-particles had a low light yield (LY) and a fast scintillation response with a decay time in the ns range due to producing the Ce4+ ions as compensators for the Mg2+ excess. The Ce4+ dopant recharged to the Ce3+ state after SCF annealing at T > 1000 °C in a reducing atmosphere (95%N2 + 5%H2). Annealed SCF samples exhibited an LY of around 42% and similar scintillation decay kinetics to those of the YAG:Ce SCF counterpart. The photoluminescence studies of Y3MgxSiyAl5-x-yO12:Ce SCFs provide evidence for Ce3+ multicenter formation and the presence of an energy transfer between various Ce3+ multicenters. The Ce3+ multicenters possessed variable crystal field strengths in the nonequivalent dodecahedral sites of the garnet host due to the substitution of the octahedral positions by Mg2+ and the tetrahedral positions by Si4+. In comparison with YAG:Ce SCF, the Ce3+ luminescence spectra of Y3MgxSiyAl5-x-yO12:Ce SCFs greatly expanded in the red region. Using these beneficial trends of changes in the optical and photocurrent properties of Y3MgxSiyAl5-x-yO12:Ce garnets as a result of Mg2+ and Si4+ alloying, a new generation of SCF converters for white LEDs, photovoltaics, and scintillators could be developed.

4.
Sci Rep ; 12(1): 3280, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35228567

ABSTRACT

Omics-based tools were coupled with bioinformatics for a systeomics analysis of two biopharma cell types: Chinese hamster ovary (M-CHO and CHO-K1) and SP2/0. Exponential and stationary phase samples revealed more than 10,000 transcripts and 6000 proteins across these two manufacturing cell lines. A statistical comparison of transcriptomics and proteomics data identified downregulated genes involved in protein folding, protein synthesis and protein metabolism, including PPIA-cyclophilin A, HSPD1, and EIF3K, in M-CHO compared to SP2/0 while cell cycle and actin cytoskeleton genes were reduced in SP2/0. KEGG pathway comparisons revealed glycerolipids, glycosphingolipids, ABC transporters, calcium signaling, cell adhesion, and secretion pathways depleted in M-CHO while retinol metabolism was upregulated. KEGG and IPA also indicated apoptosis, RNA degradation, and proteosomes enriched in CHO stationary phase. Alternatively, gene ontology analysis revealed an underrepresentation in ion and potassium channel activities, membrane proteins, and secretory granules including Stxbpt2, Syt1, Syt9, and Cma1 proteins in M-CHO. Additional enrichment strategies involving ultracentrifugation, biotinylation, and hydrazide chemistry identified over 4000 potential CHO membrane and secretory proteins, yet many secretory and membrane proteins were still depleted. This systeomics pipeline has revealed bottlenecks and potential opportunities for cell line engineering in CHO and SP2/0 to improve their production capabilities.


Subject(s)
Proteomics , Secretory Pathway , Animals , CHO Cells , Cricetinae , Cricetulus , Membrane Proteins/metabolism , Secretory Pathway/genetics
5.
JCI Insight ; 7(5)2022 03 08.
Article in English | MEDLINE | ID: mdl-35104245

ABSTRACT

Benchmarks for protective immunity from infection or severe disease after SARS-CoV-2 vaccination are still being defined. Here, we characterized virus neutralizing and ELISA antibody levels, cellular immune responses, and viral variants in 4 separate groups: healthy controls (HCs) weeks (early) or months (late) following vaccination in comparison with symptomatic patients with SARS-CoV-2 after partial or full mRNA vaccination. During the period of the study, most symptomatic breakthrough infections were caused by the SARS-CoV-2 Alpha variant. Neutralizing antibody levels in the HCs were sustained over time against the vaccine parent virus but decreased against the Alpha variant, whereas IgG titers and T cell responses against the parent virus and Alpha variant declined over time. Both partially and fully vaccinated patients with symptomatic infections had lower virus neutralizing antibody levels against the parent virus than the HCs, similar IgG antibody titers, and similar virus-specific T cell responses measured by IFN-γ. Compared with HCs, neutralization activity against the Alpha variant was lower in the partially vaccinated infected patients and tended to be lower in the fully vaccinated infected patients. In this cohort of breakthrough infections, parent virus neutralization was the superior predictor of breakthrough infections with the Alpha variant of SARS-CoV-2.


Subject(s)
Adaptive Immunity , Antibodies, Viral/immunology , COVID-19 Vaccines/pharmacology , COVID-19/virology , SARS-CoV-2/immunology , Vaccination/methods , Vaccines, Synthetic/pharmacology , mRNA Vaccines/pharmacology , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pandemics , Population Surveillance , Retrospective Studies , United States/epidemiology , Young Adult
6.
Inorg Chem ; 61(5): 2595-2602, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35061382

ABSTRACT

Organic-inorganic hybrid metal halides have recently attracted attention in the global research field for their bright light emission, tunable photoluminescence wavelength, and convenient synthesis method. This study reports the detailed properties of (C10H16N)2MnBr4, which emits bright green light with a high photoluminescence quantum yield. Results of powder X-ray diffraction, photoluminescence, thermogravimetric analysis, and Raman spectra show the phase transition of (C10H16N)2MnBr4 at 430 K. This phase transition was identified as the solid to liquid state of (C10H16N)2MnBr4. Moreover, the pressure- and temperature-induced relationship between structural and optical properties in (C10H16N)2MnBr4 can be identified. This investigation provides deep insights into the luminescent properties of metal halide crystals and promotes further research.

7.
J Clin Med ; 12(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36614902

ABSTRACT

Peripheral arteriovenous malformations (PVMs) can be classified into high-flow malformations (HFVMs) and low-flow malformations (LFVMs). Adequate distinguishment is crucial for therapeutic decision and can be done using dynamic contrast-enhanced MRI (DCE-MRI). The main aim of this retrospective study was to determine the diagnostic value of quantitative DCE-MRI ratios for differentiation between HFVM and LFVM, their optimal cut-off points, and predictive values. DCE-MRI time-resolved angiography with stochastic trajectory (TWIST) examinations of 90 patients with PVMs were included [28 HFVM (31%), 62 LFVM (69%)]. The measurements of artery-lesion time, maximum lesion enhancement, slope of the enhancement curve, and maximum percentage increase of signal intensity (SI) were obtained. The optimal cut-offs for HFVMs calculated using the Youden index were: for slope of enhancement curve < 8.7 s (sensitivity of 86%, specificity of 89%), artery-lesion time ≤ 5.6 s (sensitivity of 89%, specificity of 77%), time to maximum enhancement ≤ 30 s (sensitivity of 94%, specificity of 100%), and maximum percentage enhancement of the lesion > 662% (sensitivity of 68%, specificity of 69%). To summarize, DCE-MRI is very valuable for differentiation between HFVM and LFVM, especially if quantitative measurements are done.

8.
J Am Chem Soc ; 143(45): 19058-19066, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34735772

ABSTRACT

Portable near-infrared (NIR) light sources are in high demand for applications in spectroscopy, night vision, bioimaging, and many others. Typical phosphor designs feature isolated Cr3+ ion centers, and it is challenging to design broadband NIR phosphors based on Cr3+-Cr3+ pairs. Here, we explore the solid-solution series SrAl11.88-xGaxO19:0.12Cr3+ (x = 0, 2, 4, 6, 8, 10, and 12) as phosphors featuring Cr3+-Cr3+ pairs and evaluate structure-property relations within the series. We establish the incorporation of Ga within the magentoplumbite-type structure at five distinct crystallographic sites and evaluate the effect of this incorporation on the Cr3+-Cr3+ ion pair proximity. Electron paramagnetic measurements reveal the presence of both isolated Cr3+ and Cr3+-Cr3+ pairs, resulting in NIR luminescence at approximately 650-1050 nm. Unexpectedly, the origin of broadband NIR luminescence with a peak within the range 740-820 nm is related to the Cr3+-Cr3+ ion pair. We demonstrate the application of the SrAl5.88Ga6O19:0.12Cr3+ phosphor, which possesses an internal quantum efficiency of ∼85%, a radiant flux of ∼95 mW, and zero thermal quenching up to 500 K. This work provides a further understanding of spectral shifts in phosphor solid solutions and in particular the application of the magentoplumbites as promising next-generation NIR phosphor host systems.

9.
Materials (Basel) ; 14(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34442937

ABSTRACT

Among organic semiconductors, rubrene (RB; C42H28) is of rapidly growing interest for the development of organic and hybrid electronics due to exceptionally long spin diffusion length and carrier mobility up to 20 cm2V-1s-1 in single crystals. However, the fabrication of RB thin films resembling properties of the bulk remains challenging, mainly because of the RB molecule's twisted conformation. This hinders the formation of orthorhombic crystals with strong π-π interactions that support the band transport. In this work, RB films with a high crystalline content were fabricated by matrix-assisted laser evaporation and the associated structure, composition, and transport properties are investigated. Enhanced charge transport is ascribed to the crystalline content of the film. Spherulitic structures are observed on top of an amorphous RB layer formed in the initial deposition stage. In spherulites, orthorhombic crystals dominate, as confirmed by X-ray diffraction and the absorption and Raman spectra. Surprisingly, nanowires several microns in length are also detected. The desorption/ionization mass and X-ray photoelectron spectra consistently show minimal material decomposition and absence of RB peroxides. The observed carrier mobility up to 0.13 cm2V-1s-1, is close to the technologically accepted level, making these rubrene films attractive for spintronic and optoelectronic applications.

10.
ACS Appl Mater Interfaces ; 13(29): 34742-34751, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34264640

ABSTRACT

Cs4PbI6, as a rarely investigated member of the Cs4PbX6 (X is a halogen element) family, has been successfully synthesized at low temperatures, and the synthetic conditions have been optimized. Metal iodides such as LiI, KI, NiI2, CoI2, and ZnI2, as additives, play an important role in enhancing the formation of the Cs4PbI6 microcrystals. ZnI2 with the lowest dissociation energy is the most efficient additive to supply iodide ions, and its amount of addition has also been optimized. Strong red to near-infrared (NIR) emission properties have been detected, and its optical emission centers have been identified to be numerous embedded perovskite-type α-CsPbI3 nanocrystallites (∼5 nm in diameter) based on investigations of temperature- and pressure-dependent photoluminescent properties. High-resolution transmission electron microscopy was used to detect these hidden nanoparticles, although the material was highly beam-sensitive and confirmed a "raisin bread"-like structure of the Cs4PbI6 crystals. A NIR mini-LED for the biological application has been successfully fabricated using as-synthesized Cs4PbI6 crystals. This work provides information for the future development of infrared fluorescent nanoscale perovskite materials.

11.
mBio ; 12(4): e0097421, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34253053

ABSTRACT

In the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more severe outcomes are reported in males than in females, including hospitalizations and deaths. Animal models can provide an opportunity to mechanistically interrogate causes of sex differences in the pathogenesis of SARS-CoV-2. Adult male and female golden Syrian hamsters (8 to 10 weeks of age) were inoculated intranasally with 105 50% tissue culture infective dose (TCID50) of SARS-CoV-2/USA-WA1/2020 and euthanized at several time points during the acute (i.e., virus actively replicating) and recovery (i.e., after the infectious virus has been cleared) phases of infection. There was no mortality, but infected male hamsters experienced greater morbidity, losing a greater percentage of body mass, developed more extensive pneumonia as noted on chest computed tomography, and recovered more slowly than females. Treatment of male hamsters with estradiol did not alter pulmonary damage. Virus titers in respiratory tissues, including nasal turbinates, trachea, and lungs, and pulmonary cytokine concentrations, including interferon-ß (IFN-ß) and tumor necrosis factor-α (TNF-α), were comparable between the sexes. However, during the recovery phase of infection, females mounted 2-fold greater IgM, IgG, and IgA responses against the receptor-binding domain of the spike protein (S-RBD) in both plasma and respiratory tissues. Female hamsters also had significantly greater IgG antibodies against whole-inactivated SARS-CoV-2 and mutant S-RBDs as well as virus-neutralizing antibodies in plasma. The development of an animal model to study COVID-19 sex differences will allow for a greater mechanistic understanding of the SARS-CoV-2-associated sex differences seen in the human population. IMPORTANCE Men experience more severe outcomes from coronavirus disease 2019 (COVID-19) than women. Golden Syrian hamsters were used to explore sex differences in the pathogenesis of a human isolate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). After inoculation, male hamsters experienced greater sickness, developed more severe lung pathology, and recovered more slowly than females. Sex differences in disease could not be reversed by estradiol treatment in males and were not explained by either virus replication kinetics or the concentrations of inflammatory cytokines in the lungs. During the recovery period, antiviral antibody responses in the respiratory tract and plasma, including to newly emerging SARS-CoV-2 variants, were greater in female than in male hamsters. Greater lung pathology during the acute phase combined with lower antiviral antibody responses during the recovery phase of infection in males than in females illustrate the utility of golden Syrian hamsters as a model to explore sex differences in the pathogenesis of SARS-CoV-2 and vaccine-induced immunity and protection.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Lung/pathology , SARS-CoV-2/immunology , Severity of Illness Index , Animals , Antibody Formation/immunology , Cricetinae , Disease Models, Animal , Estradiol/pharmacology , Female , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Interferon-beta/analysis , Lung/diagnostic imaging , Lung/virology , Male , Sex Factors , Spike Glycoprotein, Coronavirus/immunology , Tumor Necrosis Factor-alpha/analysis , Viral Load
12.
Curr Opin Biotechnol ; 71: 49-54, 2021 10.
Article in English | MEDLINE | ID: mdl-34243034

ABSTRACT

Engineered Chinese hamster ovary (CHO) cells are the most widely utilized cell line for protein-based therapeutics production at industrial scales. Process development strategies which improve production capacity and quality are often implemented without an understanding of underlying intracellular changes. Intracellular redox conditions drive reactions in pathways critical to biologics production, including bioenergetic and biosynthetic pathways, necessitating methods to quantify redox-related changes. Advances in methods for analytical redox quantification presented here, including bioreactor probes, redox-targeted proteomics, genetically encoded redox-sensitive fluorescent proteins, and biochemical assays, are creating new opportunities to characterize the effects of redox in biologics production. Implementing these methods will lead to enhanced media formulations, improved bioprocess strategies, and new cell line engineering targets and ultimately develop redox into an optimizable bioprocess parameter to improve the yield and quality of these lifesaving medicines.


Subject(s)
Cell Engineering , Proteomics , Animals , CHO Cells , Cricetinae , Cricetulus , Oxidation-Reduction
13.
Metab Eng ; 67: 153-163, 2021 09.
Article in English | MEDLINE | ID: mdl-34174425

ABSTRACT

Filamentous fungi secrete protein with a very high efficiency, and this potential can be exploited advantageously to produce therapeutic proteins at low costs. A significant barrier to this goal is posed by the fact that fungal N-glycosylation varies substantially from that of humans. Inappropriate N-glycosylation of therapeutics results in reduced product quality, including poor efficacy, decreased serum half-life, and undesirable immune reactions. One solution to this problem is to reprogram the glycosylation pathway of filamentous fungi to decorate proteins with glycans that match, or can be remodeled into, those that are accepted by humans. In yeast, deletion of ALG3 leads to the accumulation of Man5GlcNAc2 glycan structures that can act as a precursor for remodeling. However, in Aspergilli, deletion of the ALG3 homolog algC leads to an N-glycan pool where the majority of the structures contain more hexose residues than the Man3-5GlcNAc2 species that can serve as substrates for humanized glycan structures. Hence, additional strain optimization is required. In this report, we have used gene deletions in combination with enzymatic and chemical glycan treatments to investigate N-glycosylation in the model fungus Aspergillus nidulans. In vitro analyses showed that only some of the N-glycan structures produced by a mutant A. nidulans strain, which is devoid of any of the known ER mannose transferases, can be trimmed into desirable Man3GlcNAc2 glycan structures, as substantial amounts of glycan structures appear to be capped by glucose residues. In agreement with this view, deletion of the ALG6 homolog algF, which encodes the putative α-1,3- glucosyltransferase that adds the first glucose residue to the growing ER glycan structure, dramatically reduces the amounts of Hex6-7HexNAc2 structures. Similarly, these structures are also sensitive to overexpression of the genes encoding the heterodimeric α-glucosidase II complex. Without the glucose caps, a new set of large N-glycan structures was formed. Formation of this set is mostly, perhaps entirely, due to mannosylation, as overexpression of the gene encoding mannosidase activity led to their elimination. Based on our new insights into the N-glycan processing in A. nidulans, an A. nidulans mutant strain was constructed in which more than 70% of the glycoforms appear to be Man3-5GlcNAc2 species, which may serve as precursors for further engineering in order to create more complex human-like N-glycan structures.


Subject(s)
Aspergillus nidulans , Glycosylation , Polysaccharides , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Glucosyltransferases , Humans , Mannosyltransferases/metabolism , Membrane Proteins , Microorganisms, Genetically-Modified , Polysaccharides/genetics
14.
bioRxiv ; 2021 Apr 04.
Article in English | MEDLINE | ID: mdl-33821269

ABSTRACT

In the ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more severe outcomes are reported in males compared with females, including hospitalizations and deaths. Animal models can provide an opportunity to mechanistically interrogate causes of sex differences in the pathogenesis of SARS-CoV-2. Adult male and female golden Syrian hamsters (8-10 weeks of age) were inoculated intranasally with 10 5 TCID 50 of SARS-CoV-2/USA-WA1/2020 and euthanized at several time points during the acute (i.e., virus actively replicating) and recovery (i.e., after the infectious virus has been cleared) phases of infection. There was no mortality, but infected male hamsters experienced greater morbidity, losing a greater percentage of body mass, developing more extensive pneumonia as noted on chest computed tomography, and recovering more slowly than females. Treatment of male hamsters with estradiol did not alter pulmonary damage. Virus titers in respiratory tissues, including nasal turbinates, trachea, and lungs, and pulmonary cytokine concentrations, including IFNb and TNFa, were comparable between the sexes. However, during the recovery phase of infection, females mounted two-fold greater IgM, IgG, and IgA responses against the receptor-binding domain of the spike protein (S-RBD) in both plasma and respiratory tissues. Female hamsters also had significantly greater IgG antibodies against whole inactivated SARS-CoV-2 and mutant S-RBDs, as well as virus neutralizing antibodies in plasma. The development of an animal model to study COVID-19 sex differences will allow for a greater mechanistic understanding of the SARS-CoV-2 associated sex differences seen in the human population.

15.
Pol J Radiol ; 86: e692-e699, 2021.
Article in English | MEDLINE | ID: mdl-35059062

ABSTRACT

Chest computed tomography (CT) is proven to have high sensitivity in COVID-19 diagnosis. It is available in most emergency wards, and in contrast to polymerase chain reaction (PCR) it can be obtained in several minutes. However, its imaging features change during the course of the disease and overlap with other viral pneumonias, including influenza pneumonia. In this brief analysis we review the recent literature about chest CT features, useful radiological scales, and COVID-19 differentiation with other viral infections.

16.
Sci Rep ; 10(1): 16620, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33024175

ABSTRACT

One major challenge observed for the expression of therapeutic bispecific antibodies (BisAbs) is high product aggregates. Aggregates increase the risk of immune responses in patients and therefore must be removed at the expense of purification yields. BisAbs contain engineered disulfide bonds, which have been demonstrated to form product aggregates, if mispaired. However, the underlying intracellular mechanisms leading to product aggregate formation remain unknown. We demonstrate that impaired glutathione regulation underlies BisAb aggregation formation in a CHO cell process. Aggregate formation was evaluated for the same clonal CHO cell line producing a BisAb using fed-batch and perfusion processes. The perfusion process produced significantly lower BisAb aggregates compared to the fed-batch process. Perfusion bioreactors attenuated mitochondrial dysfunction and ER stress resulting in a favorable intracellular redox environment as indicated by improved reduced to oxidized glutathione ratio. Conversely, mitochondrial dysfunction-induced glutathione oxidation and ER stress disrupted the intracellular redox homeostasis, leading to product aggregation in the fed-batch process. Combined, our results demonstrate that mitochondrial dysfunction and ER stress impaired glutathione regulation leading to higher product aggregates in the fed-batch process. This is the first study to utilize perfusion bioreactors as a tool to demonstrate the intracellular mechanisms underlying product aggregation formation.


Subject(s)
Antibodies, Bispecific , Batch Cell Culture Techniques/methods , Endoplasmic Reticulum Stress , Glutathione/metabolism , Mitochondria/physiology , Perfusion/methods , Protein Aggregates , Animals , Antibodies, Bispecific/adverse effects , Antibodies, Bispecific/immunology , Antibodies, Bispecific/metabolism , Bioreactors , CHO Cells , Cricetulus , Oxidation-Reduction , Protein Aggregates/immunology
17.
Sci Rep ; 10(1): 15841, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32985598

ABSTRACT

Chinese hamster ovary (CHO) cells are the predominant production vehicle for biotherapeutics. Quantitative proteomics data were obtained from two CHO cell lines (CHO-S and CHO DG44) and compared with seven Chinese hamster (Cricetulus griseus) tissues (brain, heart, kidney, liver, lung, ovary and spleen) by tandem mass tag (TMT) labeling followed by mass spectrometry, providing a comprehensive hamster tissue and cell line proteomics atlas. Of the 8470 unique proteins identified, high similarity was observed between CHO-S and CHO DG44 and included increases in proteins involved in DNA replication, cell cycle, RNA processing, and chromosome processing. Alternatively, gene ontology and pathway analysis in tissues indicated increased protein intensities related to important tissue functionalities. Proteins enriched in the brain included those involved in acidic amino acid metabolism, Golgi apparatus, and ion and phospholipid transport. The lung showed enrichment in proteins involved in BCAA catabolism, ROS metabolism, vesicle trafficking, and lipid synthesis while the ovary exhibited enrichments in extracellular matrix and adhesion proteins. The heart proteome included vasoconstriction, complement activation, and lipoprotein metabolism enrichments. These detailed comparisons of CHO cell lines and hamster tissues will enhance understanding of the relationship between proteins and tissue function and pinpoint potential pathways of biotechnological relevance for future cell engineering.


Subject(s)
CHO Cells/metabolism , Cricetulus/metabolism , Animals , Brain/metabolism , Cell Cycle , Chromosomes, Mammalian/metabolism , DNA Replication , Female , Kidney/metabolism , Lung/metabolism , Myocardium/metabolism , Ovary/metabolism , Proteins/metabolism , Proteomics , Spleen/metabolism , Tandem Mass Spectrometry
18.
J Phys Chem Lett ; 11(16): 6621-6625, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32787229

ABSTRACT

Phosphors with a rigid and symmetrical structure are urgently needed. The alkali lithosilicate family (A[Li3SiO4]) has been extensively studied with a narrow emission band due to its unique cuboid-coordinated environment and rigid structure. However, here we demonstrate for the first time Ce-doped NaK2Li[Li3SiO4]4 phosphors with a broad emission band, a high internal quantum efficiency (85.6%), and excellent thermal stability. Photoluminescence indicates the Ce's preference to occupy the Na+ site, leading to a strong blue color emission with peak maxima at 417 and 450 nm. Temperature- and pressure-dependent photoluminescence reveals thermal stability and a phase transition. Moreover, the X-ray absorption near-edge structure reveals the mixing of Ce3+ and Ce4+ in the materials; this result differs from that of Eu2+-doped A[Li3SiO4] phosphors. The charge compensation process is then proposed to explain this difference. This study not only provides insights into Ce-doped UCr4C4-type phosphors but also explains the charge compensation mechanism of the aliovalent doping process.

19.
Phys Chem Chem Phys ; 22(30): 17152-17159, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32692338

ABSTRACT

The process of persistent luminescence or glow-in-the-dark, the delayed emission of light of irradiated substances, has long fascinated researchers, who have made efforts to explain the underlying physical phenomenon as well as put it to practical use. However, persistent luminescence is an elusive and difficult process, both in terms of controlling or altering its properties, as well as providing a quantitative description. In this paper, we used SrSi2N2O2:Eu2+ as a model persistent phosphor, characterized by the broad distribution of structural defects and exhibiting long-lasting Eu2+ luminescence that is visible for a few minutes after switching off UV light. We investigated the persistent luminescence process by two complementary methods, namely, thermoluminescence and temperature-dependent persistent luminescence decay measurements. Analysis of experimental data allowed us to determine the depth distribution of traps, and allowed us to distinguish two different mechanisms by which the emission is delayed. The first, the temperature-dependent mechanism, is related to trap activation, while the second, temperature-independent mechanism is related to carrier migration. Finally, we employed the strategy of the co-doping of the phosphor SrSi2N2O2:Eu2+,M3+ (M = Ce, Nd, Dy) to modify the persistent luminescence properties.

20.
Annu Rev Chem Biomol Eng ; 11: 311-338, 2020 06 07.
Article in English | MEDLINE | ID: mdl-32176521

ABSTRACT

Regulatory bodies worldwide consider N-glycosylation to be a critical quality attribute for immunoglobulin G (IgG) and IgG-like therapeutics. This consideration is due to the importance of posttranslational modifications in determining the efficacy, safety, and pharmacokinetic properties of biologics. Given its critical role in protein therapeutic production, we review N-glycosylation beginning with an overview of the myriad interactions of N-glycans with other biological factors. We examine the mechanism and drivers for N-glycosylation during biotherapeutic production and the several competing factors that impact glycan formation, including the abundance of precursor nucleotide sugars, transporters, glycosidases, glycosyltransferases, and process conditions. We explore the role of these factors with a focus on the analytical approaches used to characterize glycosylation and associated processes, followed by the current state of advanced glycosylation modeling techniques. This combination of disciplines allows for a deeper understanding of N-glycosylation and will lead to more rational glycan control.


Subject(s)
Immunoglobulin G/metabolism , Recombinant Proteins/biosynthesis , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Cell Line , Endoplasmic Reticulum/metabolism , Glycosylation , Golgi Apparatus/metabolism , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...