Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters










Publication year range
1.
Chem Soc Rev ; 53(10): 4976-5013, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38597222

ABSTRACT

Liquid-liquid phase separation (LLPS) is an emerging phenomenon in cell physiology and diseases. The weak multivalent interaction prerequisite for LLPS is believed to be facilitated through intrinsically disordered regions, which are prevalent in neurodegenerative disease-associated proteins. These aggregation-prone proteins also exhibit an inherent property for phase separation, resulting in protein-rich liquid-like droplets. The very high local protein concentration in the water-deficient confined microenvironment not only drives the viscoelastic transition from the liquid to solid-like state but also most often nucleate amyloid fibril formation. Indeed, protein misfolding, oligomerization, and amyloid aggregation are observed to be initiated from the LLPS of various neurodegeneration-related proteins. Moreover, in these cases, neurodegeneration-promoting genetic and environmental factors play a direct role in amyloid aggregation preceded by the phase separation. These cumulative recent observations ignite the possibility of LLPS being a prominent nucleation mechanism associated with aberrant protein aggregation. The present review elaborates on the nucleation mechanism of the amyloid aggregation pathway and the possible early molecular events associated with amyloid-related protein phase separation. It also summarizes the recent advancement in understanding the aberrant phase transition of major proteins contributing to neurodegeneration focusing on the common disease-associated factors. Overall, this review proposes a generic LLPS-mediated multistep nucleation mechanism for amyloid aggregation and its implication in neurodegeneration.


Subject(s)
Amyloid , Phase Transition , Protein Folding , Humans , Amyloid/chemistry , Amyloid/metabolism , Neurodegenerative Diseases/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Phase Separation
2.
ACS Chem Neurosci ; 15(1): 108-118, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38099928

ABSTRACT

When misfolded, α-Synuclein (α-Syn), a natively disordered protein, aggregates to form amyloid fibrils responsible for the neurodegeneration observed in Parkinson's disease. Structural studies revealed distinct molecular packing of α-Syn in different fibril polymorphs and variations of interprotofilament connections in the fibrillar architecture. Fibril polymorphs have been hypothesized to exhibit diverse surface polarities depending on the folding state of the protein during aggregation; however, the spatial variation of surface polarity in amyloid fibrils remains unexplored. To map the local polarity (or hydrophobicity) along α-Syn fibrils, we visualized the spectral characteristics of two dyes with distinct polarities-hydrophilic Thioflavin T (ThT) and hydrophobic Nile red (NR)─when both are bound to α-Syn fibrils. Dual-channel fluorescence imaging reveals uneven partitioning of ThT and NR along individual fibrils, implying that relatively more polar/hydrophobic patches are spread over a few hundred nanometers. Remarkably, spectrally resolved sensitized emission imaging of α-Syn fibrils provides unambiguous evidence of energy transfer from ThT to NR, implying that dyes of dissimilar polarity are in close proximity. Furthermore, spatially resolved fluorescence spectroscopy of the solvatochromic probe NR allowed us to quantitatively map the range and variation of the polarity parameter ET30 along individual fibrils. Our results suggest the existence of interlaced polar and nonpolar nanoscale domains throughout the fibrils; however, the relative populations of these patches vary considerably over larger length scales likely due to heterogeneous packing of α-Syn during fibrilization and dissimilar exposed polarities of polymorphic segments. The employed method may provide a foundation for imaging modalities of other similar structurally unresolved systems with diverse hydrophobic-hydrophilic topology.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Amyloid/metabolism , Parkinson Disease/metabolism , Optical Imaging , Coloring Agents
3.
Nat Commun ; 14(1): 6199, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794023

ABSTRACT

Liquid-liquid phase separation (LLPS) has emerged as a crucial biological phenomenon underlying the sequestration of macromolecules (such as proteins and nucleic acids) into membraneless organelles in cells. Unstructured and intrinsically disordered domains are known to facilitate multivalent interactions driving protein LLPS. We hypothesized that LLPS could be an intrinsic property of proteins/polypeptides but with distinct phase regimes irrespective of their sequence and structure. To examine this, we studied many (a total of 23) proteins/polypeptides with different structures and sequences for LLPS study in the presence and absence of molecular crowder, polyethylene glycol (PEG-8000). We showed that all proteins and even highly charged polypeptides (under study) can undergo liquid condensate formation, however with different phase regimes and intermolecular interactions. We further demonstrated that electrostatic, hydrophobic, and H-bonding or a combination of such intermolecular interactions plays a crucial role in individual protein/peptide LLPS.


Subject(s)
Intrinsically Disordered Proteins , Intrinsically Disordered Proteins/metabolism , Peptides
4.
J Cell Sci ; 136(17)2023 09 01.
Article in English | MEDLINE | ID: mdl-37622400

ABSTRACT

p53 (also known as TP53) mutation and amyloid formation are long associated with cancer pathogenesis; however, the direct demonstration of the link between p53 amyloid load and cancer progression is lacking. Using multi-disciplinary techniques and 59 tissues (53 oral and stomach cancer tumor tissue samples from Indian individuals with cancer and six non-cancer oral and stomach tissue samples), we showed that p53 amyloid load and cancer grades are highly correlated. Furthermore, next-generation sequencing (NGS) data suggest that not only mutant p53 (e.g. single-nucleotide variants, deletions, and insertions) but wild-type p53 also formed amyloids either in the nucleus (50%) and/or in the cytoplasm in most cancer tissues. Interestingly, in all these cancer tissues, p53 displays a loss of DNA-binding and transcriptional activities, suggesting that the level of amyloid load correlates with the degree of loss and an increase in cancer grades. The p53 amyloids also sequester higher amounts of the related p63 and p73 (also known as TP63 and TP73, respectively) protein in higher-grade tumor tissues. The data suggest p53 misfolding and/or aggregation, and subsequent amyloid formation, lead to loss of the tumor-suppressive function and the gain of oncogenic function, aggravation of which might determine the cancer grade.


Subject(s)
Stomach Neoplasms , Tumor Suppressor Protein p53 , Humans , Cell Nucleus , Cytoplasm , Mutation/genetics , Tumor Suppressor Protein p53/genetics
5.
Biomaterials ; 295: 122032, 2023 04.
Article in English | MEDLINE | ID: mdl-36791521

ABSTRACT

Biomaterials mimicking extracellular matrices (ECM) for three-dimensional (3D) cultures have gained immense interest in tumor modeling and in vitro organ development. Here, we introduce a new class of amyloid fibril-based peptide hydrogels as a versatile biomimetic ECM scaffold for 3D cell culture and homogenous tumor spheroid modeling. We show that these amyloid fibril-based hydrogels are thixotropic and allow cancer cell adhesion, proliferation, and migration. All seven designed hydrogels support 3D cell culture with five different cancer cell lines forming spheroid with necrotic core and upregulation of the cancer biomarkers. We further developed the homogenous, single spheroid using the drop cast method and the data suggest that all hydrogels support the tumor spheroid formation but with different necrotic core diameters. The detailed gene expression analysis of MCF7 spheroid by microarray suggested the involvement of pro-oncogenes and significant regulatory pathways responsible for tumor spheroid formation. Further, using breast tumor tissue from a mouse xenograft model, we show that selected amyloid hydrogels support the formation of tumor spheroids with a well-defined necrotic core, cancer-associated gene expression, higher drug resistance, and tumor heterogeneity reminiscent of the original tumor. Altogether, we have developed an easy-to-use, rapid, cost-effective, and scalable platform for generating in vitro cancer models for the screening of anti-cancer therapeutics and developing personalized medicine.


Subject(s)
Neoplasms , Spheroids, Cellular , Humans , Mice , Animals , Hydrogels , Amyloid , Cell Line
6.
J Mol Biol ; 435(1): 167713, 2023 01 15.
Article in English | MEDLINE | ID: mdl-35787838

ABSTRACT

Aberrant aggregation of the misfolded presynaptic protein, α-Synuclein (α-Syn) into Lewy body (LB) and Lewy neuritis (LN) is a major pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Numerous studies have suggested that prefibrillar and fibrillar species of the misfolded α-Syn aggregates are responsible for cell death in PD pathogenesis. However, the precise molecular events during α-Syn aggregation, especially in the early stages, remain elusive. Emerging evidence has demonstrated that liquid-liquid phase separation (LLPS) of α-Syn occurs in the nucleation step of α-Syn aggregation, which offers an alternate non-canonical aggregation pathway in the crowded microenvironment. The liquid-like α-Syn droplets gradually undergo an irreversible liquid-to-solid phase transition into amyloid-like hydrogel entrapping oligomers and fibrils. This new mechanism of α-Syn LLPS and gel formation might represent the molecular basis of cellular toxicity associated with PD. This review aims to demonstrate the recent development of α-Syn LLPS, the underlying mechanism along with the microscopic events of aberrant phase transition. This review further discusses how several intrinsic and extrinsic factors regulate the thermodynamics and kinetics of α-Syn LLPS and co-LLPS with other proteins, which might explain the pathophysiology of α-Syn in various neurodegenerative diseases.


Subject(s)
Parkinson Disease , Protein Aggregation, Pathological , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Lewy Bodies/metabolism , Lewy Bodies/pathology , Parkinson Disease/metabolism , Protein Aggregation, Pathological/metabolism
7.
Methods Mol Biol ; 2551: 425-447, 2023.
Article in English | MEDLINE | ID: mdl-36310218

ABSTRACT

Liquid-liquid phase separation (LLPS) has emerged as an important phenomenon associated with formation of membraneless organelles. Recently, LLPS has been shown to act as nucleation centers for disease-associated protein aggregation and amyloid fibril formation. Phase-separated α-synuclein droplets gradually rigidify during the course of protein aggregation, and it is very challenging to understand the biomolecular interactions that lead to liquid-like to solid-like transition using conventional ensemble measurements. Here, we describe a spectrally-resolved fluorescence microscopy based Förster resonance energy transfer (FRET) imaging to probe interactions of α-synuclein in individual droplets during LLPS-mediated aggregation. By acquiring entire emission spectral profiles of individual droplets upon sequential excitation of acceptors and donors therein, this technique allows for the quantification of sensitized emission proportional to the extent of FRET, which enables interrogation of the evolution of local interactions of donor-/acceptor-labeled α-synuclein molecules within each droplet. The present study on single droplets is not only an important development for studying LLPS but can also be used to investigate self-assembly or aggregation in biomolecular systems and soft materials.


Subject(s)
Fluorescence Resonance Energy Transfer , alpha-Synuclein , Fluorescence Resonance Energy Transfer/methods , Protein Aggregates , Microscopy, Fluorescence
8.
Methods Mol Biol ; 2551: 395-423, 2023.
Article in English | MEDLINE | ID: mdl-36310217

ABSTRACT

Liquid-liquid phase separation (LLPS) acts as an important biological phenomenon in membraneless organelle formation. These phase-separated bodies can also act as nucleation centers for disease-associated amyloid formation. Fluorescence recovery after photobleaching (FRAP) is a crucial technique to analyze the material property (liquid or solid) of protein LLPS. On the other hand, Förster resonance energy transfer (FRET) is used to understand the domain-specific involvement (intermolecular interactions) of protein molecules inside the phase-separated droplets. In this protocol, we delineate mechanisms of liquid-to-solid transition of α-synuclein LLPS by using in vitro and in cell FRAP as well as in vitro FRET techniques.


Subject(s)
Fluorescence Resonance Energy Transfer , alpha-Synuclein , Humans , Fluorescence Recovery After Photobleaching , HeLa Cells , Amyloid
9.
Essays Biochem ; 66(7): 987-1000, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36373662

ABSTRACT

α-Synuclein (α-Syn) is a natively unstructured protein, which self-assembles into higher-order aggregates possessing serious pathophysiological implications. α-Syn aberrantly self-assembles into protein aggregates, which have been widely implicated in Parkinson's disease (PD) pathogenesis and other synucleinopathies. The self-assembly of α-Syn involves the structural conversion of soluble monomeric protein into oligomeric intermediates and eventually fibrillar aggregates of amyloids with cross-ß-sheet rich conformation. These aggregated α-Syn species majorly constitute the intraneuronal inclusions, which is a hallmark of PD neuropathology. Self-assembly/aggregation of α-Syn is not a single-state conversion process as unfolded protein can access multiple conformational states through the formation of metastable, transient pre-fibrillar intermediate species. Recent studies have indicated that soluble oligomers are the potential neurotoxic species responsible for cell death in PD pathogenesis. The heterogeneous and transient nature of oligomers formed during the early stage of aggregation pathway limit their detailed study in understanding the structure-toxicity relationship. Moreover, the precise molecular events occurring in the early stage of α-Syn aggregation process majorly remain unsolved. Recently, liquid-liquid phase separation (LLPS) of α-Syn has been designated as an alternate nucleation mechanism, which occurs in the early lag phase of the aggregation pathway leading to the formation of dynamic supramolecular assemblies. The stronger self-association among the protein molecules triggers the irreversible liquid-to-solid transition of these supramolecular assemblies into the amyloid-like hydrogel, which may serve as a reservoir entrapping toxic oligomeric intermediates and fibrils. This review strives to provide insights into different modes of α-Syn self-assemblies including LLPS-mediated self-assembly and its recent advancements.


Subject(s)
Intrinsically Disordered Proteins , Parkinson Disease , Humans , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Protein Aggregates , Parkinson Disease/metabolism , Amyloid/metabolism
10.
Nanoscale ; 14(40): 15021-15033, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36194184

ABSTRACT

Biomolecules are known to interact with metals and produce nanostructured hybrid materials with diverse morphologies and functions. In spite of the great advancement in the principles of biomimetics for designing complex nano-bio structures, the interplay between the physical properties of biomolecules such as sequence, charge, and hydrophobicity with predictable morphology of the resulting nanomaterials is largely unknown. Here, using various amyloidogenic proteins/peptides and their corresponding fibrils in combination with different pH, we show defined principle for gold nanocrystal growth into triangular and supra-spheres with high prediction. Using a combination of different biophysical and structural techniques, we establish the mechanism of nucleation and crystal growth of gold nanostructures and show the effective isolation of intact nanostructures from amyloid templates using protein digestion. This study will significantly advance our design principle for bioinspired materials for specific functions with great predictability.


Subject(s)
Metal Nanoparticles , Nanostructures , Gold/chemistry , Amyloidogenic Proteins , Metal Nanoparticles/chemistry , Peptides/chemistry , Hydrophobic and Hydrophilic Interactions
11.
J Phys Chem Lett ; 13(28): 6427-6438, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35816132

ABSTRACT

The size of amyloid seeds is known to modulate their autocatalytic amplification and cellular toxicity. However, the seed size-dependent secondary nucleation mechanism, toxicity, and disease-associated biological processes mediated by α-synuclein (α-Syn) fibrils are largely unknown. Using the cellular model and in vitro reconstitution, we showed that the size of α-Syn fibril seeds dictates not only their cellular internalization and associated cell death but also the distinct mechanisms of fibril amplification pathways involved in the pathological conformational change of α-Syn. Specifically, small fibril seeds showed elongation possibly through monomer addition at the fibril termini, whereas longer fibrils template the fibril amplification by surface-mediated nucleation as demonstrated by super-resolution microscopy. The distinct mechanism of fibril amplification and cellular uptake along with toxicity suggest that breakage of fibrils into seeds of different sizes determines the underlying pathological outcome of synucleinopathies.


Subject(s)
Amyloid , alpha-Synuclein , Amyloid/metabolism , alpha-Synuclein/metabolism
12.
J Cell Sci ; 135(15)2022 08 01.
Article in English | MEDLINE | ID: mdl-35796018

ABSTRACT

Transcription factor p53 (also known as TP53) has been shown to aggregate into cytoplasmic and nuclear inclusions, compromising its native tumor suppressive functions. Recently, p53 has been shown to form amyloids, which play a role in conferring cancerous properties to cells, leading to tumorigenesis. However, the exact pathways involved in p53 amyloid-mediated cellular transformations are unknown. Here, using an in cellulo model of full-length p53 amyloid formation, we demonstrate the mechanism of loss of p53 tumor-suppressive function with concomitant oncogenic gain of functions. Global gene expression profiling of cells suggests that p53 amyloid formation dysregulates genes associated with the cell cycle, proliferation, apoptosis and senescence along with major signaling pathways. This is further supported by a proteome analysis, showing a significant alteration in levels of p53 target proteins and enhanced metabolism, which enables the survival of cells. Our data indicate that specifically targeting the key molecules in pathways affected by p53 amyloid formation, such as cyclin-dependent kinase-1, leads to loss of the oncogenic phenotype and induces apoptosis of cells. Overall, our work establishes the mechanism of the transformation of cells due to p53 amyloids leading to cancer pathogenesis. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Amyloid/genetics , Amyloid/metabolism , Apoptosis/genetics , Carcinogenesis/genetics , Cell Cycle/genetics , Cell Division , Cell Proliferation/genetics , Cell Transformation, Neoplastic , Gain of Function Mutation , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
13.
J Mol Biol ; 434(19): 167761, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35907572

ABSTRACT

α-Synuclein (α-Syn) amyloids in synucleinopathies are suggested to be structurally and functionally diverse, reminiscent of prion-like strains. The mechanism of how the aggregation of the same precursor protein results in the formation of fibril polymorphs remains elusive. Here, we demonstrate the structure-function relationship of two polymorphs, pre-matured fibrils (PMFs) and helix-matured fibrils (HMFs), based on α-Syn aggregation intermediates. These polymorphs display the structural differences as demonstrated by solid-state NMR and mass spectrometry studies and also possess different cellular activities such as seeding, internalization, and cell-to-cell transfer of aggregates. HMFs, with a compact core structure, exhibit low seeding potency but readily internalize and transfer from one cell to another. The less structured PMFs lack transcellular transfer ability but induce abundant α-Syn pathology and trigger the formation of aggresomes in cells. Overall, the study highlights that the conformational heterogeneity in the aggregation pathway may lead to fibril polymorphs with distinct prion-like behavior.


Subject(s)
Prions , Protein Aggregation, Pathological , alpha-Synuclein , Amyloid/chemistry , Humans , Inclusion Bodies/chemistry , Magnetic Resonance Spectroscopy , Prions/metabolism , alpha-Synuclein/chemistry
14.
PLoS Comput Biol ; 18(5): e1010067, 2022 05.
Article in English | MEDLINE | ID: mdl-35533203

ABSTRACT

Phase separation of biomolecules could be mediated by both specific and non-specific interactions. How the interplay between non-specific and specific interactions along with polymer entropy influences phase separation is an open question. We address this question by simulating self-associating molecules as polymer chains with a short core stretch that forms the specifically interacting functional interface and longer non-core regions that participate in non-specific/promiscuous interactions. Our results show that the interplay of specific (strength, ϵsp) and non-specific interactions (strength, ϵns) could result in phase separation of polymers and its transition to solid-like aggregates (mature state). In the absence of ϵns, the polymer chains do not dwell long enough in the vicinity of each other to undergo phase separation and transition into a mature state. On the other hand, in the limit of strong ϵns, the assemblies cannot transition into the mature state and form a non-specific assembly, suggesting an optimal range of interactions favoring mature multimers. In the scenario where only a fraction (Nfrac) of the non-core regions participate in attractive interactions, we find that slight modifications to either ϵns or Nfrac can result in dramatically altered self-assembled states. Using a combination of heterogeneous and homogeneous mix of polymers, we establish how this interplay between interaction energies dictates the propensity of biomolecules to find the correct binding partner at dilute concentrations in crowded environments.


Subject(s)
Polymers , Entropy , Polymers/chemistry
15.
Elife ; 112022 03 08.
Article in English | MEDLINE | ID: mdl-35257659

ABSTRACT

Synergistic-aggregation and cross-seeding by two different proteins/peptides in the amyloid aggregation are well evident in various neurological disorders including Alzheimer's disease. Here, we show co-storage of human Prolactin (PRL), which is associated with lactation in mammals, and neuropeptide galanin (GAL) as functional amyloids in secretory granules (SGs) of the female rat. Using a wide variety of biophysical studies, we show that irrespective of the difference in sequence and structure, both hormones facilitate their synergic aggregation to amyloid fibrils. Although each hormone possesses homotypic seeding ability, a unidirectional cross-seeding of GAL aggregation by PRL seeds and the inability of cross seeding by mixed fibrils suggest tight regulation of functional amyloid formation by these hormones for their efficient storage in SGs. Further, the faster release of functional hormones from mixed fibrils compared to the corresponding individual amyloid, suggests a novel mechanism of heterologous amyloid formation in functional amyloids of SGs in the pituitary.


The formation of plaques of proteins called 'amyloids' in the brain is one of the hallmark characteristics of both Alzheimer's and Parkinson's disease, but amyloids can form in many tissues and organs, often disrupting normal activity. A lot of the research into amyloids has focused on their role in disease, but it turns out that amyloids can also appear in healthy tissues. For example, some protein hormones form amyloids that act as storage depots, helping cells to release the hormone when it is needed. Normally, amyloids are made mostly of a single type of protein or protein fragment associated with a particular disease like Alzheimer's. Often, this type of amyloid promotes plaque formation in other proteins, which aggravates other diseases (for example, the amyloids that form in Alzheimer's can lead to Parkinson's disease or type II diabetes getting worse).The plaques start growing from small amyloid fragments called seeds. In mixed amyloids ­ amyloids made of two types of proteins ­ seeds made of one protein can trigger the formation of amyloids of the other protein. This raises the question, is this true for hormones? The body often releases more than one hormone at a time from the same tissue; for example, the pituitary gland releases prolactin and galanin simultaneously. However, these hormones have completely different structures, so whether they can form a mixed amyloid is unclear. To answer this question, Chatterjee et al. first determined that, within the pituitary gland of female rats, prolactin and galanin could be found together in the same cells, forming mixed amyloids. To understand out how this happens, Chatterjee et al. tried seeding new amyloids using either prolactin or galanin. This revealed that only prolactin seeds were able to trigger the formation of galanin amyloids. Chatterjee et al. also found that the mixed amyloids could release the hormones faster than amyloids made from either protein alone. Together, these results suggest that the collaboration between these two proteins may help maintain hormone balance in the body. Problems with hormone storage and release lead to various human diseases, including prolactinoma. Understanding amyloid storage depots could reveal new ways to control hormone levels. Further research could also help to explain more about well-studied diseases linked to amyloids, like Alzheimer's.


Subject(s)
Amyloidosis , Peptide Hormones , Amyloid/chemistry , Amyloidogenic Proteins , Animals , Female , Galanin , Humans , Life Cycle Stages , Mammals , Prolactin , Rats
16.
Dalton Trans ; 51(6): 2269-2277, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35073568

ABSTRACT

Mercury ions are toxic and exhibit hazardous effects on the environment and biological systems, and thus demand for the selective and sensitive detection of mercury has become considerably an important issue. Here, we have developed a diselenide containing coumarin-based probe 3 for the selective detection of Hg(II) with a "turn-on" response (a 48 fold increase in fluorescence intensity) at 438 nm. The probe could quantitatively detect Hg(II) with a detection limit of 1.32 µM in PBS solution. Moreover, the probe has operable efficiency over the physiological range with an increase in the quantum yield from 1.2% to 57.3%. The reaction of the probe with Hg(II) yielded a novel monoselenide based coumarin 4via diselenide oxidation, which was confirmed by single crystal XRD. Furthermore, the biological use of the probe for the detection of Hg(II) was confirmed in the MCF-7 cell line. To the best of our knowledge, this is the first reaction-based probe for Hg(II) via diselenide oxidation.


Subject(s)
Mercury
17.
Biophys Chem ; 281: 106736, 2022 02.
Article in English | MEDLINE | ID: mdl-34923391

ABSTRACT

Cytoplasmic deposition of aberrantly misfolded α-synuclein (α-Syn) is a common feature of synucleinopathies, including Parkinson's disease (PD). However, the precise pathogenic mechanism of α-Syn in synucleinopathies remains elusive. Emerging evidence has suggested that α-Syn may contribute to PD pathogenesis in several ways; wherein the contribution of fibrillar species, for exerting toxicity and disease transmission, cannot be neglected. Further, the oligomeric species could be the most plausible neurotoxic species causing neuronal cell death. However, understanding the structural and molecular insights of these oligomers are very challenging due to the heterogeneity and transient nature of the species. In this review, we discuss the recent advancements in understanding the formation and role of α-Syn oligomers in PD pathogenesis. We also summarize the different types of α-Syn oligomeric species and potential mechanisms to exert neurotoxicity. Finally, we address the possible ways to target α-Syn as a promising approach against PD and the possible future directions.


Subject(s)
Parkinson Disease , Synucleinopathies , Humans , Parkinson Disease/metabolism , alpha-Synuclein/chemistry
18.
J Phys Chem B ; 125(49): 13406-13414, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34861110

ABSTRACT

Amyloid fibrils are structurally heterogeneous protein aggregates that are implicated in a wide range of neurodegenerative and other proteopathic diseases. These fibrils exist in a variety of different tertiary and higher-level structures, and this exhibited polymorphism greatly complicates any structural study of amyloid fibrils. In this work, we demonstrate a method of using polarization-resolved microscopy to directly observe the structural heterogeneity of individual amyloid fibrils using amyloid-bound fluorophores. We formulate a mathematical quantity, helical anisotropy, which utilizes the polarized emission of amyloid-bound fluorophores to report on the local structure of individual fibrils. Using this method, we show how model amyloid fibrils generated from short peptides exhibit diverse structural properties both between different fibrils and within a single fibril, in a manner that is replicated for fibrils assembled from longer proteins. Our method represents an accessible and easily adaptable technique by which polymorphism in the structure of amyloid fibrils can be probed. Additionally, the methodology we describe here can be easily extended to the study of other fibrillar and otherwise ordered supramolecular structures.


Subject(s)
Amyloid , Peptides , Amyloid beta-Peptides , Microscopy, Polarization
19.
Chem Sci ; 12(40): 13530-13545, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34777773

ABSTRACT

Amyloid formation is a generic property of many protein/polypeptide chains. A broad spectrum of proteins, despite having diversity in the inherent precursor sequence and heterogeneity present in the mechanism of aggregation produces a common cross ß-spine structure that is often associated with several human diseases. However, a general modeling framework to interpret amyloid formation remains elusive. Herein, we propose a data-driven mathematical modeling approach that elucidates the most probable interaction network for the aggregation of a group of proteins (α-synuclein, Aß42, Myb, and TTR proteins) by considering an ensemble set of network models, which include most of the mechanistic complexities and heterogeneities related to amyloidogenesis. The best-fitting model efficiently quantifies various timescales involved in the process of amyloidogenesis and explains the mechanistic basis of the monomer concentration dependency of amyloid-forming kinetics. Moreover, the present model reconciles several mutant studies and inhibitor experiments for the respective proteins, making experimentally feasible non-intuitive predictions, and provides further insights about how to fine-tune the various microscopic events related to amyloid formation kinetics. This might have an application to formulate better therapeutic measures in the future to counter unwanted amyloidogenesis. Importantly, the theoretical method used here is quite general and can be extended for any amyloid-forming protein.

20.
Biomolecules ; 11(10)2021 09 28.
Article in English | MEDLINE | ID: mdl-34680054

ABSTRACT

Abnormal accumulation of aggregated α-synuclein (α-Syn) is seen in a variety of neurodegenerative diseases, including Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy body (DLB), Parkinson's disease dementia (PDD), and even subsets of Alzheimer's disease (AD) showing Lewy-body-like pathology. These synucleinopathies exhibit differences in their clinical and pathological representations, reminiscent of prion disorders. Emerging evidence suggests that α-Syn self-assembles and polymerizes into conformationally diverse polymorphs in vitro and in vivo, similar to prions. These α-Syn polymorphs arising from the same precursor protein may exhibit strain-specific biochemical properties and the ability to induce distinct pathological phenotypes upon their inoculation in animal models. In this review, we discuss clinical and pathological variability in synucleinopathies and several aspects of α-Syn fibril polymorphism, including the existence of high-resolution molecular structures and brain-derived strains. The current review sheds light on the recent advances in delineating the structure-pathogenic relationship of α-Syn and how diverse α-Syn molecular polymorphs contribute to the existing clinical heterogeneity in synucleinopathies.


Subject(s)
Amyloid/genetics , Brain/metabolism , Protein Aggregates/genetics , alpha-Synuclein/genetics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid/ultrastructure , Brain/pathology , Humans , Lewy Bodies/genetics , Lewy Bodies/pathology , Multiple System Atrophy/genetics , Multiple System Atrophy/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Prion Diseases/genetics , Prion Diseases/pathology , alpha-Synuclein/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...