Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 5702, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34588434

ABSTRACT

Regulation of chromatin plays fundamental roles in the development of the brain. Haploinsufficiency of the chromatin remodeling enzyme CHD7 causes CHARGE syndrome, a genetic disorder that affects the development of the cerebellum. However, how CHD7 controls chromatin states in the cerebellum remains incompletely understood. Using conditional knockout of CHD7 in granule cell precursors in the mouse cerebellum, we find that CHD7 robustly promotes chromatin accessibility, active histone modifications, and RNA polymerase recruitment at enhancers. In vivo profiling of genome architecture reveals that CHD7 concordantly regulates epigenomic modifications associated with enhancer activation and gene expression of topologically-interacting genes. Genome and gene ontology studies show that CHD7-regulated enhancers are associated with genes that control brain tissue morphogenesis. Accordingly, conditional knockout of CHD7 triggers a striking phenotype of cerebellar polymicrogyria, which we have also found in a case of CHARGE syndrome. Finally, we uncover a CHD7-dependent switch in the preferred orientation of granule cell precursor division in the developing cerebellum, providing a potential cellular basis for the cerebellar polymicrogyria phenotype upon loss of CHD7. Collectively, our findings define epigenomic regulation by CHD7 in granule cell precursors and identify abnormal cerebellar patterning upon CHD7 depletion, with potential implications for our understanding of CHARGE syndrome.


Subject(s)
CHARGE Syndrome/genetics , Cerebellum/growth & development , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Developmental , Polymicrogyria/genetics , Animals , CHARGE Syndrome/pathology , Cell Division/genetics , Cerebellum/pathology , Chromatin Assembly and Disassembly , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Disease Models, Animal , Enhancer Elements, Genetic , Epigenesis, Genetic , Histone Code , Humans , Infant , Mice , Mice, Knockout , Mutation , Neural Stem Cells/metabolism , Neurons/metabolism , Polymicrogyria/pathology , RNA-Seq
2.
Vis Neurosci ; 37: E007, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32921331

ABSTRACT

Vision loss, among the most feared complications of diabetes, is primarily caused by diabetic retinopathy, a disease that manifests in well-recognized, characteristic microvascular lesions. The reasons for retinal susceptibility to damage in diabetes are unclear, especially considering that microvascular networks are found in all tissues. However, the unique metabolic demands of retinal neurons could account for their vulnerability in diabetes. Photoreceptors are the first neurons in the visual circuit and are also the most energy-demanding cells of the retina. Here, we review experimental and clinical evidence linking photoreceptors to the development of diabetic retinopathy. We then describe the influence of retinal illumination on photoreceptor metabolism, effects of light modulation on the severity of diabetic retinopathy, and recent clinical trials testing the treatment of diabetic retinopathy with interventions that impact photoreceptor metabolism. Finally, we introduce several possible mechanisms that could link photoreceptor responses to light and the development of retinal vascular disease in diabetes. Collectively, these concepts form the basis for a growing body of investigative efforts aimed at developing novel pharmacologic and nonpharmacologic tools that target photoreceptor physiology to treat a very common cause of blindness across the world.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Humans , Photoreceptor Cells , Retina
3.
Cell Rep ; 29(7): 2001-2015.e5, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31722213

ABSTRACT

Compensation among paralogous transcription factors (TFs) confers genetic robustness of cellular processes, but how TFs dynamically respond to paralog depletion on a genome-wide scale in vivo remains incompletely understood. Using single and double conditional knockout of myocyte enhancer factor 2 (MEF2) family TFs in granule neurons of the mouse cerebellum, we find that MEF2A and MEF2D play functionally redundant roles in cerebellar-dependent motor learning. Although both TFs are highly expressed in granule neurons, transcriptomic analyses show MEF2D is the predominant genomic regulator of gene expression in vivo. Strikingly, genome-wide occupancy analyses reveal upon depletion of MEF2D, MEF2A occupancy robustly increases at a subset of sites normally bound to MEF2D. Importantly, sites experiencing compensatory MEF2A occupancy are concentrated within open chromatin and undergo functional compensation for genomic activation and gene expression. Finally, motor activity induces a switch from non-compensatory to compensatory MEF2-dependent gene regulation. These studies uncover genome-wide functional interdependency between paralogous TFs in the brain.


Subject(s)
Cerebellum/metabolism , Chromatin/metabolism , Gene Expression Regulation , Neurons/metabolism , Animals , Cerebellum/cytology , Chromatin/genetics , Genome-Wide Association Study , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Mice , Neurons/cytology
4.
J Neurosci ; 39(1): 44-62, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30425119

ABSTRACT

Control of neuronal precursor cell proliferation is essential for normal brain development, and deregulation of this fundamental developmental event contributes to brain diseases. Typically, neuronal precursor cell proliferation extends over long periods of time during brain development. However, how neuronal precursor proliferation is regulated in a temporally specific manner remains to be elucidated. Here, we report that conditional KO of the transcriptional regulator SnoN in cerebellar granule neuron precursors robustly inhibits the proliferation of these cells and promotes their cell cycle exit at later stages of cerebellar development in the postnatal male and female mouse brain. In laser capture microdissection followed by RNA-Seq, designed to profile gene expression specifically in the external granule layer of the cerebellum, we find that SnoN promotes the expression of cell proliferation genes and concomitantly represses differentiation genes in granule neuron precursors in vivo Remarkably, bioinformatics analyses reveal that SnoN-regulated genes contain binding sites for the transcription factors N-myc and Pax6, which promote the proliferation and differentiation of granule neuron precursors, respectively. Accordingly, we uncover novel physical interactions of SnoN with N-myc and Pax6 in cells. In behavior analyses, conditional KO of SnoN impairs cerebellar-dependent learning in a delayed eye-blink conditioning paradigm, suggesting that SnoN-regulation of granule neuron precursor proliferation bears functional consequences at the organismal level. Our findings define a novel function and mechanism for the major transcriptional regulator SnoN in the control of granule neuron precursor proliferation in the mammalian brain.SIGNIFICANCE STATEMENT This study reports the discovery that the transcriptional regulator SnoN plays a crucial role in the proliferation of cerebellar granule neuron precursors in the postnatal mouse brain. Conditional KO of SnoN in granule neuron precursors robustly inhibits the proliferation of these cells and promotes their cycle exit specifically at later stages of cerebellar development, with biological consequences of impaired cerebellar-dependent learning. Genomics and bioinformatics analyses reveal that SnoN promotes the expression of cell proliferation genes and concomitantly represses cell differentiation genes in vivo Although SnoN has been implicated in distinct aspects of the development of postmitotic neurons, this study identifies a novel function for SnoN in neuronal precursors in the mammalian brain.


Subject(s)
Brain/cytology , Cell Proliferation , Cerebellum/physiology , Neural Stem Cells/physiology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/physiology , Animals , Behavior, Animal , Blinking/physiology , Brain/growth & development , Cell Differentiation/genetics , Cerebellum/cytology , Computational Biology , Cytoplasmic Granules/physiology , Female , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Genes, myc/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , PAX6 Transcription Factor/genetics , PAX6 Transcription Factor/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...