Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 657: 124110, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38604539

ABSTRACT

The goal of this investigation is to develop stable ophthalmic nanoformulations containing cannabidiol (CBD) and its analog cannabidiol-valine-hemisuccinate (CBD-VHS) for improved ocular delivery. Two nanoformulations, nanoemulsion (NE) and nanomicelles (NMC), were developed and evaluated for physicochemical characteristics, drug-excipient compatibility, sterilization, thermal analysis, surface morphology, ex-vivo transcorneal permeation, corneal deposition, and stability. The saturation solubility studies revealed that among the surfactants tested, Cremophor EL had the highest solubilizing capacity for CBD (23.3 ± 0.1 mg/mL) and CBD-VHS (11.2 ± 0.2 mg/mL). The globule size for the lead CBD formulations (NE and NMC) ranged between 205 and 270 nm while CBD-VHS-NMC formulation had a particle size of about 78 nm. The sterilized formulations, except for CBD-VHS-NMC at 40 °C, were stable for three months of storage (last time point tested). Release, in terms of CBD, in the in-vitro release/diffusion studies over 18 h, were faster from the CBD-VHS nanomicelles (38 %) compared to that from the CBD nanoemulsion (16 %) and nanomicelles (33 %). Transcorneal permeation studies revealed improvement in CBD permeability and flux with both formulations; however, a greater improvement was observed with the NMC formulation compared to the NE formulation. In conclusion, the nanoformulations prepared could serve as efficient topical ocular drug delivery platforms for CBD and its analog.


Subject(s)
Administration, Ophthalmic , Cannabidiol , Cornea , Drug Stability , Emulsions , Nanoparticles , Particle Size , Solubility , Cannabidiol/administration & dosage , Cannabidiol/chemistry , Cannabidiol/pharmacokinetics , Animals , Cornea/metabolism , Cornea/drug effects , Nanoparticles/chemistry , Rabbits , Micelles , Valine/analogs & derivatives , Valine/chemistry , Valine/administration & dosage , Valine/pharmacokinetics , Drug Liberation , Lipids/chemistry , Excipients/chemistry , Permeability , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Surface-Active Agents/chemistry , Ophthalmic Solutions/administration & dosage
2.
J Ocul Pharmacol Ther ; 40(1): 67-77, 2024.
Article in English | MEDLINE | ID: mdl-38117668

ABSTRACT

Purpose: Natamycin (NT) is used as a first-line antifungal prescription in the treatment of fungal keratitis (FK) and is commercially available as a 5% w/v ophthalmic suspension. NT shows poor water solubility and light sensitivity. Thus, the present investigation is aimed to enhance the fraction of NT in solution in the commercial formulation by adding cyclodextrins (CDs), thereby improving the delivery of the drug into deeper ocular tissues. Methods: The solubility of NT in different CDs, the impact of ultraviolet (UV) light exposure, stability at 4°C and 25°C, in vitro release, and ex vivo transcorneal permeation studies were performed. Results: NT exhibited the highest solubility (66-fold) in randomly methylated-ß-cyclodextrin (RM-ßCD) with hydroxypropyl-ßCD (HP-ßCD) showing the next highest solubility (54-fold) increase in comparison to market formulation Natacyn® as control. The stability of NT-CD solutions was monitored for 2 months (last-time point) at both storage conditions. The degradation profile of NT in NT-RM-ßCD and NT-HP-ßCD solutions under UV-light exposure followed first-order kinetics exhibiting half-lives of 1.2 h and 1.4 h, respectively, an almost 3-fold increase over the control solutions. In vitro release/diffusion studies revealed that suspensions containing RM-ßCD and HP-ßCD increased transmembrane flux significantly (3.1-fold) compared to the control group. The transcorneal permeability of NT from NT-RM-ßCD suspension exhibited an 8.5-fold (P < 0.05) improvement compared to Natacyn eyedrops. Furthermore, the addition of RM-ßCD to NT suspension increases the solubilized fraction of NT and enhances transcorneal permeability. Conclusion: Therefore, NT-RM-ßCD formulations could potentially lead to a decreased frequency of administration and significantly improved therapeutic outcomes in FK treatment.


Subject(s)
Corneal Ulcer , Cyclodextrins , Eye Infections, Fungal , Humans , Natamycin/pharmacology , Natamycin/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Eye Infections, Fungal/drug therapy , Solubility , Corneal Ulcer/drug therapy , Suspensions
3.
J Mol Graph Model ; 126: 108625, 2024 01.
Article in English | MEDLINE | ID: mdl-37722352

ABSTRACT

Tacrolimus (TAC) is a drug from natural origin that can be used for topical application to control autoimmune skin diseases such as atopic dermatitis, psoriasis, and vitiligo. Computational simulation based on quantum mechanics theory by solving Schrödinger Equation for n-body problem may allow the theoretical calculation of drug geometry, charge distribution and dipole moment, electronic levels and molecular orbitals, electronic transitions, and vibrational transitions. Additionally, the development of novel nanotechnology-based delivery systems containing TAC can be an approach for reducing the dose applied topically, increasing dermal retention, and reducing the reported side effects due to the controlled release pattern. Firstly, this paper was devoted to obtaining the molecular, electronic, and vibrational data for TAC by using five semi-empirical (SE) methods and one Density Functional Theory (DFT) method in order to expand the knowledge about the drug properties by computational simulation. Then, this study was carried out to prepare TAC-loaded poly(ԑ-caprolactone) nanocapsules by interfacial polymer deposition following solvent displacement and investigate the in vitro drug permeation using the Franz diffusion cell and the photoacoustic spectroscopy. Computational simulations were compared in the three schemes SE/SE, SE/DFT, and DFT/DFT, where the first method represented the procedure used for geometry optimization and the second one was performed to extract electronic and vibrational properties. Computational data showed correspondence with TAC geometry description and electronic properties, with few differences in HOMO - LUMO gap (Δ) and dipole values. The SE/DFT and DFT/DFT methods presented a better drug description for the UV-Vis, Infrared, and Raman spectra with low deviation from experimental values. Franz cell model demonstrated that TAC was more delivered across the Strat-M® membrane from the solution than the drug-loaded poly(ԑ-caprolactone) nanocapsules. Photoacoustic spectroscopy assay revealed that these nanocapsules remained more retained into the Strat-M® membranes, which is desirable for the topical application.


Subject(s)
Nanocapsules , Tacrolimus , Models, Molecular , Molecular Conformation , Magnetic Resonance Spectroscopy , Spectrum Analysis, Raman , Spectroscopy, Fourier Transform Infrared , Spectrophotometry, Ultraviolet , Quantum Theory , Thermodynamics , Vibration
4.
Antibiotics (Basel) ; 12(8)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37627738

ABSTRACT

Bacterial conjunctivitis (BC) entails inflammation of the ocular mucous membrane. Early effective treatment of BC can prevent the spread of the infection to the intraocular tissues, which could lead to bacterial endophthalmitis or serious visual disability. In 2003, gatifloxacin (GTX) eyedrops were introduced as a new broad-spectrum fluoroquinolone to treat BC. Subsequently, GTX use was extended to other ocular bacterial infections. However, due to precorneal loss and poor ocular bioavailability, frequent administration of the commercial eyedrops is necessary, leading to poor patient compliance. Thus, the goal of the current investigation was to formulate GTX in a lipid-based drug delivery system to overcome the challenges with the existing marketed eyedrops and, thus, improve the management of bacterial conjunctivitis. GTX-NLCs and SLNs were formulated with a hot homogenization-probe sonication method. The lead GTX-NLC formulation was characterized and assessed for in vitro drug release, antimicrobial efficacy (against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa), and ex vivo permeation. The lead formulation exhibited desired physicochemical characteristics, an extended release of GTX over a 12 h period, and was stable over three months at the three storage conditions (refrigerated, room temperature, and accelerated). The transcorneal flux and permeability of GTX from the GTX-NLC formulation were 5.5- and 6.0-fold higher in comparison to the commercial eyedrops and exhibited a similar in vitro antibacterial activity. Therefore, GTX-NLCs could serve as an alternative drug delivery platform to improve treatment outcomes in BC.

5.
Int J Pharm ; 631: 122533, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36566827

ABSTRACT

Coupling hot-melt extrusion (HME) with fused deposition modeling three-dimensional printing (FDM-3DP) can facilitate the fabrication of tailored, patient-centered, and complex-shaped ocular dosage forms. We fabricated ciprofloxacin HCl ocular inserts by coupling high-throughput, solvent-free, and continuous HME with FDM-3DP. Insert fabrication utilized biocompatible, biodegradable, bioadhesive Klucel™ hydroxypropyl cellulose polymer, subjected to distinct FDM-3DP processing parameters, utilizing a design of experiment approach to achieve a tailored release profile. We determined the drug content, thermal properties, drug-excipient compatibility, surface morphology, in vitro release, antibacterial activity, ex-vivo transcorneal permeation, and stability of inserts. An inverse relationship was noted between insert thickness, infill density, and drug release rate. The optimized design demonstrated an amorphous solid dispersion with an extended-release profile over 24 h, no physical or chemical incompatibility, excellent mucoadhesive strength, smooth surface, lack of bacterial growth (Pseudomonas aeruginosa) in all release samples, and prolonged transcorneal drug flux compared with commercial eye drops and immediate-release inserts. The designed inserts were stable at room temperature considering drug content, thermal behavior, and release profile over three months. Overall, the fabricated insert could reduce administration frequency to once-daily dosing, affording a promising topical delivery platform with prolonged antibacterial activity and superior therapeutic outcomes for managing ocular bacterial infections.


Subject(s)
Ciprofloxacin , Polymers , Humans , Tablets/chemistry , Ciprofloxacin/pharmacology , Drug Liberation , Polymers/chemistry , Printing, Three-Dimensional , Anti-Bacterial Agents/pharmacology , Technology, Pharmaceutical/methods
6.
Int J Pharm ; 630: 122423, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36427695

ABSTRACT

This study developed, optimized, characterized, and evaluated bioadhesive, hot-melt extruded (HME), extended-release ocular inserts containing ciprofloxacin hydrochloride (CIP-HCL) to improve the therapeutic outcomes of ocular bacterial infections. The inserts were fabricated with FDA-approved biocompatible, biodegradable, and bioadhesive polymers that were tuned in different ratios to achieve a sustained release profile. The results revealed an inverse relationship between the Klucel™ hydroxypropyl cellulose (HPC, 140,000 Da) concentration and drug release and extended-release profile over 24 h. The CIP-HCL-HME inserts presented stable drug content, thermal behavior, surface pH, and release profiles over three months of room-temperature storage and demonstrated adequate mucoadhesive strength. SEM micrographs revealed a smooth surface. Bacterial growth was not observed on the samples during the in vitro release experiment (0.5-24 h), indicating that a minimum inhibitory concentration (MIC) of 90 against Pseudomonas aeruginosa was achieved. Ex vivo transcorneal permeation studies using excised rabbit corneas revealed that the prepared ocular inserts prolonged the transcorneal flux of the drug compared to commercial eye drops and immediate-release inserts and could reduce the administration frequency to once daily. Therefore, the inserts could increase patient compliance and exhibited prolonged antibacterial activity and thus could provide better therapeutic outcomes against ocular bacterial infections.


Subject(s)
Bacterial Infections , Ciprofloxacin , Animals , Rabbits , Delayed-Action Preparations , Drug Delivery Systems/methods , Eye
7.
Pharmaceutics ; 14(12)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36559077

ABSTRACT

Cannabidiol (CBD) is the major non-psychoactive and most widely studied of the cannabinoid constituents and has great therapeutic potential in a variety of diseases. However, contradictory reports in the literature with respect to CBD's effect on intraocular pressure (IOP) have raised concerns and halted research exploring its use in ocular therapeutics. Therefore, the current investigation aimed to further evaluate CBD's impact on the IOP in the rabbit model. CBD nanoemulsions, containing Carbopol® 940 NF as a mucoadhesive agent (CBD-NEC), were prepared using hot-homogenization followed by probe sonication. The stability of the formulations post-moist-heat sterilization, in terms of physical and chemical characteristics, was studied for three different storage conditions. The effect of the formulation on the intraocular pressure (IOP) profile in normotensive Dutch Belted male rabbits was then examined. The lead CBD-NEC formulation (1% w/v CBD) exhibited a globule size of 259 ± 2.0 nm, 0.27 ± 0.01 PDI, and 23.2 ± 0.4 cP viscosity, and was physically and chemically stable for one month (last time point tested) at 4 °C, 25 °C, and 40 °C. CBD-NEC significantly lowered the IOP in the treated eyes for up to 360 min, with a peak drop in IOP of 4.5 mmHg observed at the 150 min time point, post-topical application. The IOP of the contralateral eye (untreated) was also observed to be lowered significantly, but the effect lasted up to the 180 min time point only. Overall, topically administered CBD, formulated in a mucoadhesive nanoemulsion formulation, reduced the IOP in the animal model studied. The results support further exploration of CBD as a therapeutic option for various inflammation-based ocular diseases.

8.
Pharmaceutics ; 14(6)2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35745818

ABSTRACT

Ocular bacterial infections can lead to serious visual disability without proper treatment. Moxifloxacin (MOX) has been approved by the US Food and Drug Administration as a monotherapy for ocular bacterial infections and is available commercially as an ophthalmic solution (0.5% w/v). However, precorneal retention, drainage, and low bioavailability remain the foremost challenges associated with current commercial eyedrops. With this study, we aimed to design a MOX-loaded nanoemulsion (NE; MOX-NE) with mucoadhesive agents (MOX-NEM) to sustain MOX release, as well as to overcome the potential drawbacks of the current commercial ophthalmic formulation. MOX-NE and MOX-NEM formulations were prepared by hot homogenization coupled with probe sonication technique and subsequently characterized. The lead formulations were further evaluated for in vitro release, ex vivo transcorneal permeation, sterilization, and antimicrobial efficacy studies. Commercial MOX ophthalmic solution was used as a control. The lead formulations showed the desired physicochemical properties and viscosity. All lead formulations showed sustained release profiles a period of more than 12 h. Filtered and autoclaved lead formulations were stable for one month (the last time point tested) under refrigeration and at room temperature. Ex vivo transcorneal permeation studies revealed a 2.1-fold improvement in MOX permeation of the lead MOX-NE formulation compared with Vigamox® eyedrops. However, MOX-NEM formulations showed similar flux and permeability coefficients to those of Vigamox® eyedrops. The lead formulations showed similar in vitro antibacterial activity as the commercial eyedrops and crude drug solution. Therefore, MOX-NE and MOX-NEM formulations could serve as effective delivery vehicles for MOX and could improve treatment outcomes in different ocular bacterial infections.

9.
Pharmaceutics ; 14(5)2022 May 11.
Article in English | MEDLINE | ID: mdl-35631620

ABSTRACT

The management of retinoblastoma (RB) involves the use of invasive treatment regimens. Paclitaxel (PTX), an effective antineoplastic compound used in the treatment of a wide range of malignant tumors, poses treatment challenges due to systemic toxicity, rapid elimination, and development of resistance. The goal of this work was to develop PTX-loaded, α-tocopherol succinate (αTS)-based, nanostructured lipid carrier (NLCs; αTS-PTX-NLC) and PEGylated αTS-PTX-NLC (αTS-PTX-PEG-NLC) to improve ocular bioavailability. The hot homogenization method was used to prepare the NLCs, and repeated measures ANOVA analysis was used for formulation optimization. αTS-PTX-NLC and αTS-PTX-PEG-NLC had a mean particle size, polydispersity index and zeta potential of 186.2 ± 3.9 nm, 0.17 ± 0.03, −33.2 ± 1.3 mV and 96.2 ± 3.9 nm, 0.27 ± 0.03, −39.15 ± 3.2 mV, respectively. The assay and entrapment efficiency of both formulations was >95.0%. The NLC exhibited a spherical shape, as seen from TEM images. Sterilized (autoclaved) formulations were stable for up to 60 days (last time point checked) under refrigerated conditions. PTX-NLC formulations exhibited an initial burst release and 40% drug release, overall, in 48 h. The formulations exhibited desirable physicochemical properties and could lead to an effective therapeutic option in the management of RB.

10.
Int J Nanomedicine ; 17: 2283-2299, 2022.
Article in English | MEDLINE | ID: mdl-35611213

ABSTRACT

Introduction: Untreated ocular infections can damage the unique fine structures of the eye with possible visual impairments and blindness. Ciprofloxacin (CIP) ophthalmic solution is prescribed as first-line therapy in ocular bacterial infections. Natamycin (NT) ophthalmic suspension is one of the progenitors in ocular antifungal therapy. Nanostructured lipid carriers (NLCs) have been widely examined for ocular penetration enhancement and distribution to deeper ocular tissues. The objective of the current study was to prepare NLCs loaded with a combination of CIP and NT (CIP-NT-NLCs) and embed them in an in-situ gelling system (CIP-NT-NLCs-IG). This novel formulation will target the co-delivery of CIP and NT for the treatment of mixed ocular infections or as empirical treatment in case of limited access to healthcare diagnostic services. Methods: CIP-NT-NLC and CIP-NT-NLC-IG formulations were evaluated based on physicochemical characteristics, in vitro release, and ex vivo transcorneal permeation studies and compared against commercial CIP and NT ophthalmic eye drops. Results and Discussion: NLCs formulation (0.1% CIP and 0.3% NT) showed particle size, polydispersity index, and zeta potential of 196.2 ± 1.2 nm, 0.43 ± 0.06, and -28.1 ± 1.4 mV, respectively. Moreover, CIP-NT-NLCs showed entrapment efficiency of 80.9 ± 2.9 and 98.7 ± 1.9% for CIP and NT, respectively. CIP-NT-NLCs-IGformulation with 0.2% w/v gellan gum demonstrated the most favorable viscoelastic characteristics for ocular application. CIP-NT-NLCs and CIP-NT-NLCs-IG formulations exhibited a sustained release pattern for both drugs over 24 h. Moreover, CIP-NT-NLCs and CIP-NT-NLC-IG formulations showed 4.0- and 2.2-folds, and 5.0- and 2.5-folds enhancement in ex vivo transcorneal permeability of CIP and NT, respectively, compared to the control formulations. Conclusion: The results suggest that this dual nanoparticulate-based in-situ gelling drug delivery system can serve as a promising topical delivery platform for the treatment of ocular infections.


Subject(s)
Eye Infections , Nanostructures , Ciprofloxacin , Drug Carriers/chemistry , Drug Liberation , Gels/chemistry , Humans , Lipids/chemistry , Nanostructures/chemistry , Natamycin , Ophthalmic Solutions , Particle Size
11.
Int J Pharm ; 616: 121564, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35151817

ABSTRACT

The current study aimed to determine the effect of inclusion of a mucoadhesive agent on the intensity and duration of intraocular pressure (IOP) lowering activity of Δ9-tetrahydrocannabinol-valine-hemisuccinate (THC-VHS) loaded in a nanoemulsion (THC-VHS-NE) formulation. THC-VHS-NE formulation with Carbopol®940NF added as a mucoadhesive agent (THC-VHS-NEC) was prepared using hot-homogenization followed by probe sonication and characterized. A comparative evaluation of the IOP lowering activity of THC-VHS-NEC, THC-VHS-NE, THC-NEC, and commercial latanoprost ophthalmic solution, was undertaken in normotensive New Zealand white rabbits. The effect of pH, surfactant concentration, and autoclave process on the IOP lowering activity of THC-VHS-NEC was also studied. The formulation demonstrated desired viscosity, physicochemical properties, and autoclave process stability. The THC-VHS-NEC formulation showed a significant (p < 0.05) improvement in the duration of IOP lowering activity, compared to THC-NEC and THC-VHS-NE. Moreover, in this model, THC-VHS-NEC was more effective than commercially available latanoprost ophthalmic formulation, in terms of both duration and intensity of IOP lowering. A change in formulation pH, surfactant concentration, or sterilization process did not impact the IOP lowering activity of THC-VHS-NEC. Overall, inclusion of a mucoadhesive agent in THC-VHS-NE formulation, significantly increased the duration of activity, and could lead to a once- or twice- a day dosing regimen.


Subject(s)
Eye Diseases , Intraocular Pressure , Animals , Antihypertensive Agents/therapeutic use , Dronabinol , Eye Diseases/drug therapy , Latanoprost , Ophthalmic Solutions , Rabbits , Valine
12.
ChemMedChem ; 17(7): e202100684, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35043597

ABSTRACT

Current common analgesics are mediated through the mu or kappa opioid receptor agonism. Unfortunately, selective mu or kappa receptor agonists often cause harmful side effects. However, ligands exhibiting dual agonism to the opioid receptors, such as to mu and kappa, or to mu and delta, have been suggested to temper undesirable adverse effects while retaining analgesic activity. Herein we report an introduction of various 6,5-fused rings to C2 of the salvinorin scaffold via an ester linker. In vitro studies showed that many of these compounds have dual agonism on kappa and mu opioid receptors. In vivo studies on the lead dual kappa and mu opioid receptor agonist demonstrated supraspinal thermal analgesic activity while avoiding anxiogenic effects in male mice, thus providing further strong evidence in support of the therapeutic advantages of dual opioid receptor agonists over selective opioid receptor agonists.


Subject(s)
Receptors, Opioid, kappa , Receptors, Opioid, mu , Analgesics/pharmacology , Analgesics/therapeutic use , Analgesics, Opioid/pharmacology , Animals , Diterpenes, Clerodane , Esters , Male , Mice , Receptors, Opioid, kappa/agonists , Receptors, Opioid, mu/agonists
14.
AAPS PharmSciTech ; 22(7): 240, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34590195

ABSTRACT

Primaquine (PQ), an 8-aminoquinoline antimalarial drug, has been widely used for the eradication of hypnozoites from the liver and, therefore, recognized as the radical cure of malaria. However, the clinical applications of PQ are restricted to patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency due to severe dose-related hemolytic side effects. Nanoparticle carriers have shown great potential in achieving higher PQ concentrations in the target site, thereby reducing dose-related systemic toxicity caused by non-specific exposure. This work aims to develop, compare, and evaluate three PQ-loaded lipid-based drug carriers including solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and nano-emulsions (NE). The optimized PQ-SLN, PQ-NLC, and PQ-NE had a particle size of 250 nm, a PDI range of 0.1 to 0.3, a zeta potential of - 30 mV, and entrapment efficiency of ~ 90%. All lipid formulations showed sustained release in both simulated gastric and intestinal fluids over 6 h. Four empirical models - including zero-order, Higuchi, Korsmeyer-Peppas, and Hixson-Crowell models - were tested to understand the drug release mechanisms of PQ-SLN, PQ-NLC, and PQ-NE. The model fitness was found to be the highest in the Korsmeyer-Peppas model for all the PQ-loaded lipid formulations (R2: 0.88-0.94). No significant changes were observed in the entrapment efficiency, particle size, and PDI of lipid formulations throughout 1 month of storage at 4 °C and 25 °C. PQ-SLN and PQ-NLC can be further lyophilized with cryoprotectants to improve long-term stability. Finally, the treatment of erythrocytes with PQ-SLN, PQ-NLC, and PQ-NE reduced erythrocyte hemolysis by approximately 4.5-fold compared to the free drug solution.


Subject(s)
Drug Carriers , Nanoparticles , Primaquine , Emulsions , Hemolysis , Humans , Lipids , Particle Size , Surface-Active Agents
15.
Int J Pharm ; 603: 120676, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33961956

ABSTRACT

The current study sought to formulate sustained-release hot-melt extruded (HME) ocular inserts of moxifloxacin hydrochloride (MOX; MOX-HME) for the treatment of bacterial keratitis. The concentration of Eudragit™ FS-100 (FS) and propylene glycol (PG) used as polymer and plasticizer, respectively, in the inserts were optimized using the central composite design (CCD) to achieve sustained release. The inserts were characterized for weight, thickness, surface characteristics, pH, and in vitro release profile. The crystalline characteristics of MOX and surface morphology of the inserts were evaluated using differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Furthermore, ex vivo permeation through rabbit cornea and stability of the optimized MOX-HME insert was investigated. The results demonstrate an inverse correlation between FS concentration and MOX release from the MOX-HME inserts, and a potential 24 h release. The optimized MOX-HME inserts were found to be stable at room temperature for four months, showing no significant change in drug content, pH and release profile. MOX converted into an amorphous form in the MOX-HME inserts and did not recrystallize during the study period. SEM analysis confirmed the smooth surface of the MOX-HME insert. The ex vivo studies revealed that the MOX-HME inserts provided a much prolonged transcorneal MOX flux as compared to the commercial ophthalmic solution and the immediate-release MOX-HME insert. The results indicate that MOX-HME inserts could potentially provide a once-a-day application, consequently reducing the dosing frequency and acting as an alternative delivery system in the management of bacterial infections.


Subject(s)
Hot Temperature , Polymers , Animals , Calorimetry, Differential Scanning , Drug Compounding , Moxifloxacin , Rabbits , Solubility
16.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802394

ABSTRACT

Bacterial keratitis (BK) is a critical ocular infection that can lead to serious visual disability. Ciprofloxacin (CIP), moxifloxacin (MOX), and levofloxacin (LFX) have been accepted as monotherapies by the US Food and Drug Administration for BK treatment. CIP is available commercially at 0.3% w/v concentration as an ophthalmic solution and as an ointment for ocular delivery. Because of solubility issues at physiological pH, CIP precipitation can occur at the corneal surface post instillation of the solution dosage form. Consequently, the ocular bioavailability of CIP is reduced. The ointment dosage form is associated with side effects such as blurred vision, itching, redness, eye discomfort, and eye dryness. This study aimed to design a CIP loaded nanoemulsion (NE; CIP-NE) to facilitate drug penetration into the corneal layers for improved therapeutic outcomes as well as to overcome the drawbacks of the current commercial ophthalmic formulations. CIP-NE formulations were prepared by hot homogenization and ultrasonication, using oleic acid (CIP-O-NE) and Labrafac® Lipophile WL 1349 (CIP-L-NE) as the oily phase, and Tween® 80 and Poloxamer 188 as surfactants. Optimized CIP-NE was further evaluated with respect to in vitro release, ex vivo transcorneal permeation, and moist heat sterilization process, using commercial CIP ophthalmic solution as a control. Optimized CIP-O-NE formulation showed a globule size, polydispersity index, and zeta potential of 121.6 ± 1.5 nm, 0.13 ± 0.01, and -35.1 ± 2.1 mV, respectively, with 100.1 ± 2.0% drug content and was spherical in shape. In vitro release and ex vivo transcorneal permeation studies exhibited sustained release and a 2.1-fold permeation enhancement, respectively, compared with commercial CIP ophthalmic solution. Autoclaved CIP-O-NE formulation was found to be stable for one month (last time-point tested) at refrigerated and room temperature. Therefore, CIP-NE formulation could serve as an effective delivery system for CIP and could improve treatment outcomes in BK.

17.
AAPS PharmSciTech ; 22(1): 48, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33447869

ABSTRACT

The objective of this study was to investigate the processability of hot-melt extrusion (HME) to formulate ocular inserts of valacyclovir hydrochloride and evaluate the in vivo bioavailability of the formulation. To optimize the formulation of this drug, different physical mixtures of the polymers and plasticizer were prepared. The physical mixture was extruded through a co-rotating twin-screw extruder, and the obtained ocular inserts were cut with dimensions of 4 mm × 2 mm × 1 mm to enhance the formulation instillation in the eye. Ocular inserts were evaluated for drug content, weight variation, uniformity of thickness, in vitro drug release, and in vivo drug bioavailability. The ocular inserts were thermally characterized using differential scanning calorimetry (DSC). The attributes observed for the ocular inserts were within the target specifications. The ocular inserts of valacyclovir hydrochloride were successfully prepared using the HME. They provided sustained drug release along with enhanced drug permeation when compared with the eyedrop solution and dissolve completely in 8 h. Additionally, the obtained results demonstrated that the formulation of ocular inserts of valacyclovir hydrochloride using HME was reproducible, robust, and effective method.


Subject(s)
Antiviral Agents/administration & dosage , Drug Implants , Hot Melt Extrusion Technology , Valacyclovir/administration & dosage , Administration, Ophthalmic , Antiviral Agents/therapeutic use , Biological Availability , Calorimetry, Differential Scanning , Drug Compounding/methods , Drug Liberation , Keratitis, Herpetic/drug therapy , Polymers/chemistry , Valacyclovir/pharmacokinetics , Valacyclovir/therapeutic use
18.
Drug Deliv Transl Res ; 11(5): 2096-2107, 2021 10.
Article in English | MEDLINE | ID: mdl-33169348

ABSTRACT

The use of Δ9-tetrahydrocannabinol (THC) and Δ9-tetrahydrocannabinol-valine-hemisuccinate (THC-VHS; NB1111) has recently been investigated in the management of intraocular pressure (IOP). The current study was undertaken to develop an optimized THC-VHS-loaded nanoemulsion formulation (NE; THC-VHS-NE) that could improve the drug load and duration of activity. THC-VHS-NE formulation was prepared by homogenization followed by ultrasonication. Sesame oil, Tween®80, and Poloxamer®188 were used as the oil, surfactant, and cosurfactant, respectively. Stability of the optimized THC-VHS-NE formulation was observed at 4 °C. The IOP lowering effect of the lead formulations, commercial timolol, and latanoprost ophthalmic solutions, as well as an emulsion in Tocrisolve™ (THC-VHS-TOC), was studied in New Zealand White rabbits following topical administration. The effect of surfactant concentration and sterilization process on IOP-lowering activity was also studied. THC-VHS-NE formulations (0.5, 1.0, and 2.0% w/v) showed dose dependent duration of action. The 1.0%w/v THC-VHS-NE formulation was selected for further evaluation because of its desirable physical and chemical characteristics. THC-VHS-NE formulation prepared with 2% w/v Tween®80 exhibited a higher drop in IOP than the 0.75 and 4.0% w/v of Tween®80 containing formulations. The IOP-lowering duration was, however, similar for the formulations with 0.75 and 2.0% Tween®80, while that with 4.0% Tween®80 was shorter. THC-VHS-NE formulation produced a greater drop in IOP (p < 0.05) and a longer duration of activity compared to THC-VHS-TOC, latanoprost, and timolol. The formulation could be sterilized by filtration without impacting product attributes. Overall, the optimized THC-VHS-NE formulation demonstrated a significantly better IOP reduction profile in the test model compared to the commercial ophthalmic solutions evaluated.


Subject(s)
Dronabinol , Intraocular Pressure , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Dronabinol/pharmacology , Ophthalmic Solutions , Rabbits , Sterilization , Surface-Active Agents , Timolol , Valine
19.
Pharmaceutics ; 12(6)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575524

ABSTRACT

Bacterial endophthalmitis (BE) is a potentially sight-threatening inflammatory reaction of the intraocular fluids or tissues caused by bacteria. Ciprofloxacin (CIP) eye drops are prescribed as first-line therapy in BE. However, frequent administration is necessary due to precorneal loss and poor ocular bioavailability. The objective of the current research was to prepare CIP containing nanostructured lipid carriers (CIP-NLCs) loaded an in situ gel system (CIP-NLC-IG) for topical ocular administration for enhanced and sustained antibacterial activity in BE treatment. CIP-NLCs were prepared by the hot homogenization method and optimized based on physicochemical characteristics and physical stability. The optimized CIP-NLC formulation was converted into CIP-NLC-IG with the addition of gellan gum as a gelling agent. Furthermore, optimized CIP-NLC and CIP-NLC-IG were evaluated for in vitro release and ex vivo transcorneal permeation studies, using commercial CIP ophthalmic solution (CIP-C) as the control. The optimized CIP-NLC formulation showed particle size, polydispersity index, zeta potential, assay and entrapment efficiency of 193.1 ± 5.1 nm, 0.43 ± 0.01, -32.5 ± 1.5 mV, 99.5 ± 5.5 and 96.3 ± 2.5%, respectively. CIP-NLC-IG with 0.2% w/v gellan gum showed optimal viscoelastic characteristics. The in vitro release studies demonstrated sustained release of CIP from CIP-NLC and CIP-NLC-IG formulations over a 24 h period. Transcorneal flux and permeability increased 4 and 3.5-fold, and 2.2 and 1.9-fold from CIP-NLC and CIP-NLC-IG formulations, respectively, when compared to CIP-C. The results demonstrate that CIP-NLC-IG could be considered as an alternate delivery system to prolong the residence time on the ocular surface after topical administration. Thus, the current CIP ophthalmic formulations may exhibit improved ocular bioavailability and prolonged antibacterial activity, which may improve therapeutic outcomes in the treatment of BE.

20.
J Ocul Pharmacol Ther ; 36(6): 410-420, 2020.
Article in English | MEDLINE | ID: mdl-32315560

ABSTRACT

Purpose: Natamycin (NTM) ophthalmic suspension is the only FDA-approved formulation commercially available for treating ocular fungal infections. However, precorneal residence times and losses/drainage remain the foremost challenges associated with current ocular antifungal pharmacotherapy. In our previous investigations, NTM loaded polyethylene glycol nanolipid carriers (NTM-PNLCs) showed enhanced corneal permeation, both in vitro and in vivo. To further improve the corneal retention of NTM-PNLCs, this study aimed to develop a gelling system composed of carboxyvinyl polymer, guar gum, and boric acid in which the NTM-PNLCs were loaded. Methods: A 23 factorial design was employed in formulating and optimizing the gelling system for NTM-PNLCs, where the independent factors were the gelling excipients (guar gum, boric acid, and Carbopol® 940) and dependent variables were gelling time, gel depot collapse time, rheology, firmness, and work of adhesion. Optimized gel was evaluated for transcorneal permeation using rabbit cornea, in vitro; and tear pharmacokinetics and ocular biodistribution in male New Zealand White rabbits, in vivo. Results: Optimized NTM-PNLC-GEL was found to exhibit shear thinning rheology, adequate firmness, and spreadability, and formed a depot that did not collapse immediately. In addition, the in vitro transcorneal evaluation studies indicated that the NTM-PNLC-GEL exhibited a lower/slower flux and rate in comparison to Natacyn® suspension. NTM-PNLC-GEL (0.3%), at a 16-fold lower dose, exhibited mean residence time and elimination half-life comparable to Natacyn (5%), and provided similar in vivo concentrations in the innermost tissues of the eye. Conclusion: The data indicate that the NTM-PNLC-GEL formulation could serve as an alternative during ophthalmic antifungal therapy.


Subject(s)
Antifungal Agents/pharmacokinetics , Drug Compounding/methods , Eye Infections, Fungal/drug therapy , Gels/administration & dosage , Nanoparticles/administration & dosage , Natamycin/pharmacokinetics , Animals , Antifungal Agents/administration & dosage , Antifungal Agents/adverse effects , Antifungal Agents/therapeutic use , Borates/administration & dosage , Borates/chemistry , Cornea/physiology , Cyamopsis/chemistry , Drug Carriers/chemistry , Drug Carriers/metabolism , Gels/chemistry , Male , Nanoparticles/chemistry , Natamycin/administration & dosage , Natamycin/adverse effects , Natamycin/therapeutic use , Ophthalmic Solutions/administration & dosage , Permeability/drug effects , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Polymers/administration & dosage , Polymers/chemistry , Rabbits , Tissue Distribution/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...