Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Nature ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750365

ABSTRACT

Adoptively transferred T cells and agents designed to block the CD47-SIRPα axis are promising cancer therapeutics that activate distinct arms of the immune system1,2. Here we administered anti-CD47 antibodies in combination with adoptively transferred T cells with the goal of enhancing antitumour efficacy but observed abrogated therapeutic benefit due to rapid macrophage-mediated clearance of T cells expressing chimeric antigen receptors (CARs) or engineered T cell receptors. Anti-CD47-antibody-mediated CAR T cell clearance was potent and rapid enough to serve as an effective safety switch. To overcome this challenge, we engineered the CD47 variant CD47(Q31P) (47E), which engages SIRPα and provides a 'don't eat me' signal that is not blocked by anti-CD47 antibodies. TCR or CAR T cells expressing 47E are resistant to clearance by macrophages after treatment with anti-CD47 antibodies, and mediate substantial, sustained macrophage recruitment to the tumour microenvironment. Although many of the recruited macrophages manifested an M2-like profile3, the combined therapy synergistically enhanced antitumour efficacy. Our study identifies macrophages as major regulators of T cell persistence and illustrates the fundamental challenge of combining T-cell-directed therapeutics with those designed to activate macrophages. It delivers a therapeutic approach that is capable of simultaneously harnessing the antitumour effects of T cells and macrophages, offering enhanced potency against solid tumours.

2.
Nat Methods ; 21(2): 322-330, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38238557

ABSTRACT

The development of high-resolution microscopes has made it possible to investigate cellular processes in 3D and over time. However, observing fast cellular dynamics remains challenging because of photobleaching and phototoxicity. Here we report the implementation of two content-aware frame interpolation (CAFI) deep learning networks, Zooming SlowMo and Depth-Aware Video Frame Interpolation, that are highly suited for accurately predicting images in between image pairs, therefore improving the temporal resolution of image series post-acquisition. We show that CAFI is capable of understanding the motion context of biological structures and can perform better than standard interpolation methods. We benchmark CAFI's performance on 12 different datasets, obtained from four different microscopy modalities, and demonstrate its capabilities for single-particle tracking and nuclear segmentation. CAFI potentially allows for reduced light exposure and phototoxicity on the sample for improved long-term live-cell imaging. The models and the training and testing data are available via the ZeroCostDL4Mic platform.


Subject(s)
Deep Learning , Microscopy , Single Molecule Imaging , Motion
3.
Nature ; 623(7987): 608-615, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938768

ABSTRACT

Cell therapies have yielded durable clinical benefits for patients with cancer, but the risks associated with the development of therapies from manipulated human cells are understudied. For example, we lack a comprehensive understanding of the mechanisms of toxicities observed in patients receiving T cell therapies, including recent reports of encephalitis caused by reactivation of human herpesvirus 6 (HHV-6)1. Here, through petabase-scale viral genomics mining, we examine the landscape of human latent viral reactivation and demonstrate that HHV-6B can become reactivated in cultures of human CD4+ T cells. Using single-cell sequencing, we identify a rare population of HHV-6 'super-expressors' (about 1 in 300-10,000 cells) that possess high viral transcriptional activity, among research-grade allogeneic chimeric antigen receptor (CAR) T cells. By analysing single-cell sequencing data from patients receiving cell therapy products that are approved by the US Food and Drug Administration2 or are in clinical studies3-5, we identify the presence of HHV-6-super-expressor CAR T cells in patients in vivo. Together, the findings of our study demonstrate the utility of comprehensive genomics analyses in implicating cell therapy products as a potential source contributing to the lytic HHV-6 infection that has been reported in clinical trials1,6-8 and may influence the design and production of autologous and allogeneic cell therapies.


Subject(s)
CD4-Positive T-Lymphocytes , Herpesvirus 6, Human , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Virus Activation , Virus Latency , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Clinical Trials as Topic , Gene Expression Regulation, Viral , Genomics , Herpesvirus 6, Human/genetics , Herpesvirus 6, Human/isolation & purification , Herpesvirus 6, Human/physiology , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Infectious Encephalitis/complications , Infectious Encephalitis/virology , Receptors, Chimeric Antigen/immunology , Roseolovirus Infections/complications , Roseolovirus Infections/virology , Single-Cell Gene Expression Analysis , Viral Load
4.
Mod Pathol ; 36(10): 100256, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37391168

ABSTRACT

CD58 or lymphocyte function-associated antigen-3, is a ligand for CD2 receptors on T and NK cells and is required for their activation and target cell killing. We recently showed a trend toward higher frequency of CD58 aberrations in patients with diffuse large B-cell lymphoma (DLBCL) who progressed on chimeric antigen receptor-T-cell treatment compared with those who responded. Given that CD58 status may be an important measure of T-cell-mediated therapy failure, we developed a CD58 immunohistochemical assay and evaluated CD58 status in 748 lymphomas. Our results show that CD58 protein expression is downregulated in a significant proportion of all subtypes of B-, T-, and NK-cell lymphomas. CD58 loss is significantly related to poor prognostic indicators in DLBCL and to ALK and DUSP22 rearrangements in anaplastic large-cell lymphoma. However, it is not associated with overall or progression-free survival in any of the lymphoma subtypes. As eligibility for chimeric antigen receptor-T-cell therapy is being extended to a broader spectrum of lymphomas, mechanisms of resistance, such as target downregulation and CD58 loss, may limit therapeutic success. CD58 status is therefore an important biomarker in lymphoma patients who may benefit from next-generation T-cell-mediated therapies or other novel approaches that mitigate immune escape.

5.
Nat Med ; 29(4): 803-810, 2023 04.
Article in English | MEDLINE | ID: mdl-37024595

ABSTRACT

Cancer immunotherapies have unique toxicities. Establishment of grading scales and standardized grade-based treatment algorithms for toxicity syndromes can improve the safety of these treatments, as observed for cytokine release syndrome (CRS) and immune effector cell associated neurotoxicity syndrome (ICANS) in patients with B cell malignancies treated with chimeric antigen receptor (CAR) T cell therapy. We have observed a toxicity syndrome, distinct from CRS and ICANS, in patients treated with cell therapies for tumors in the central nervous system (CNS), which we term tumor inflammation-associated neurotoxicity (TIAN). Encompassing the concept of 'pseudoprogression,' but broader than inflammation-induced edema alone, TIAN is relevant not only to cellular therapies, but also to other immunotherapies for CNS tumors. To facilitate the safe administration of cell therapies for patients with CNS tumors, we define TIAN, propose a toxicity grading scale for TIAN syndrome and discuss the potential management of this entity, with the goal of standardizing both reporting and management.


Subject(s)
Neoplasms , Neurotoxicity Syndromes , Humans , Neoplasms/therapy , Immunotherapy, Adoptive/adverse effects , Immunotherapy , Inflammation , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/therapy , Neurotoxicity Syndromes/etiology
6.
Nature ; 615(7952): 507-516, 2023 03.
Article in English | MEDLINE | ID: mdl-36890224

ABSTRACT

Although chimeric antigen receptor (CAR) T cells have altered the treatment landscape for B cell malignancies, the risk of on-target, off-tumour toxicity has hampered their development for solid tumours because most target antigens are shared with normal cells1,2. Researchers have attempted to apply Boolean-logic gating to CAR T cells to prevent toxicity3-5; however, a truly safe and effective logic-gated CAR has remained elusive6. Here we describe an approach to CAR engineering in which we replace traditional CD3ζ domains with intracellular proximal T cell signalling molecules. We show that certain proximal signalling CARs, such as a ZAP-70 CAR, can activate T cells and eradicate tumours in vivo while bypassing upstream signalling proteins, including CD3ζ. The primary role of ZAP-70 is to phosphorylate LAT and SLP-76, which form a scaffold for signal propagation. We exploited the cooperative role of LAT and SLP-76 to engineer logic-gated intracellular network (LINK) CAR, a rapid and reversible Boolean-logic AND-gated CAR T cell platform that outperforms other systems in both efficacy and prevention of on-target, off-tumour toxicity. LINK CAR will expand the range of molecules that can be targeted with CAR T cells, and will enable these powerful therapeutic agents to be used for solid tumours and diverse diseases such as autoimmunity7 and fibrosis8. In addition, this work shows that the internal signalling machinery of cells can be repurposed into surface receptors, which could open new avenues for cellular engineering.


Subject(s)
Cell Engineering , Immunotherapy, Adoptive , Logic , Neoplasms , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen , Signal Transduction , T-Lymphocytes , Humans , Cell Engineering/methods , Immunotherapy, Adoptive/adverse effects , Leukemia, B-Cell , Lymphoma, B-Cell , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/therapy , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
7.
Cancer Discov ; 13(5): 1164-1185, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36856575

ABSTRACT

Therapeutic cancer vaccination seeks to elicit activation of tumor-reactive T cells capable of recognizing tumor-associated antigens (TAA) and eradicating malignant cells. Here, we present a cancer vaccination approach utilizing myeloid-lineage reprogramming to directly convert cancer cells into tumor-reprogrammed antigen-presenting cells (TR-APC). Using syngeneic murine leukemia models, we demonstrate that TR-APCs acquire both myeloid phenotype and function, process and present endogenous TAAs, and potently stimulate TAA-specific CD4+ and CD8+ T cells. In vivo TR-APC induction elicits clonal expansion of cancer-specific T cells, establishes cancer-specific immune memory, and ultimately promotes leukemia eradication. We further show that both hematologic cancers and solid tumors, including sarcomas and carcinomas, are amenable to myeloid-lineage reprogramming into TR-APCs. Finally, we demonstrate the clinical applicability of this approach by generating TR-APCs from primary clinical specimens and stimulating autologous patient-derived T cells. Thus, TR-APCs represent a cancer vaccination therapeutic strategy with broad implications for clinical immuno-oncology. SIGNIFICANCE: Despite recent advances, the clinical benefit provided by cancer vaccination remains limited. We present a cancer vaccination approach leveraging myeloid-lineage reprogramming of cancer cells into APCs, which subsequently activate anticancer immunity through presentation of self-derived cancer antigens. Both hematologic and solid malignancies derive significant therapeutic benefit from reprogramming-based immunotherapy. This article is highlighted in the In This Issue feature, p. 1027.


Subject(s)
Cancer Vaccines , Leukemia , Neoplasms , Animals , Mice , Antigen-Presenting Cells , Neoplasms/therapy , Antigens, Neoplasm , Immunotherapy
8.
Cancer Cell ; 41(1): 210-225.e5, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36584673

ABSTRACT

Most relapsed/refractory large B cell lymphoma (r/rLBCL) patients receiving anti-CD19 chimeric antigen receptor (CAR19) T cells relapse. To characterize determinants of resistance, we profiled over 700 longitudinal specimens from two independent cohorts (n = 65 and n = 73) of r/rLBCL patients treated with axicabtagene ciloleucel. A method for simultaneous profiling of circulating tumor DNA (ctDNA), cell-free CAR19 (cfCAR19) retroviral fragments, and cell-free T cell receptor rearrangements (cfTCR) enabled integration of tumor and both engineered and non-engineered T cell effector-mediated factors for assessing treatment failure and predicting outcomes. Alterations in multiple classes of genes are associated with resistance, including B cell identity (PAX5 and IRF8), immune checkpoints (CD274), and those affecting the microenvironment (TMEM30A). Somatic tumor alterations affect CAR19 therapy at multiple levels, including CAR19 T cell expansion, persistence, and tumor microenvironment. Further, CAR19 T cells play a reciprocal role in shaping tumor genotype and phenotype. We envision these findings will facilitate improved chimeric antigen receptor (CAR) T cells and personalized therapeutic approaches.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Neoplasm Recurrence, Local/drug therapy , Lymphoma, Large B-Cell, Diffuse/therapy , Lymphoma, Large B-Cell, Diffuse/drug therapy , Immunotherapy, Adoptive/methods , T-Lymphocytes , Antigens, CD19/genetics , Tumor Microenvironment
9.
J Med Imaging Radiat Oncol ; 67(1): 81-88, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36300562

ABSTRACT

INTRODUCTION: 123 I-MIBG scan is used in neuroblastoma (NB) to monitor treatment response. Time to resolution of 123 I-MIBG avidity after radiation therapy (RT) is unknown. We sought to determine time to resolution of 123 I-MIBG avidity after RT and local failure (LF) rate. METHODS: We performed a retrospective review of children with high-risk NB who underwent 123 I-MIBG scans pre- and post-RT from 2003 to 2019. Time from RT to resolution of 123 I-MIBG activity was analysed. LF and cumulative incidence of local progression (CILP) after RT stratified by site, presence of residual disease and use of boost RT were determined. RESULTS: Forty-two patients with median age 3.9 years (1.9-4.7 years) were included, with median follow-up time 3.9 years (1.4-6.9). Eighty-six lesions were treated with RT to median dose of 21.6 Gy. Eighteen of 86 lesions were evaluable for time to resolution of MIBG avidity after RT, with median resolution time of 78 days (36-208). No LF occurred among 26 patients who received RT to primary sites after GTR, versus 4/12 (25%) patients treated with residual primary disease. 2-year CILP was 19% (12% primary disease 25% metastatic disease (P = 0.18)). 2-year CILP for non-residual primary, residual primary, non-residual metastatic and residual metastatic lesions was 0%, 42%, 11% and 30% respectively (P = 0.01) and for boosted and non-boosted residual lesions was 29% and 35% (P = 0.44). CONCLUSION: Median time to MIBG resolution after RT was 78 days. Primary lesions without residual disease had excellent local control. LF rate was higher after RT for residual disease, with no benefit for boost RT.


Subject(s)
3-Iodobenzylguanidine , Neuroblastoma , Child , Humans , Child, Preschool , Neuroblastoma/diagnostic imaging , Iodine Radioisotopes , Radionuclide Imaging
10.
Nat Rev Clin Oncol ; 20(1): 49-62, 2023 01.
Article in English | MEDLINE | ID: mdl-36418477

ABSTRACT

Therapies with genetically modified T cells that express chimeric antigen receptors (CARs) specific for CD19 or B cell maturation antigen (BCMA) are approved to treat certain B cell malignancies. However, translating these successes into treatments for patients with solid tumours presents various challenges, including the risk of clinically serious on-target, off-tumour toxicity (OTOT) owing to CAR T cell-mediated cytotoxicity against non-malignant tissues expressing the target antigen. Indeed, severe OTOT has been observed in various CAR T cell clinical trials involving patients with solid tumours, highlighting the importance of establishing strategies to predict, mitigate and control the onset of this effect. In this Review, we summarize current clinical evidence of OTOT with CAR T cells in the treatment of solid tumours and discuss the utility of preclinical mouse models in predicting clinical OTOT. We then describe novel strategies being developed to improve the specificity of CAR T cells in solid tumours, particularly the role of affinity tuning of target binders, logic circuits and synthetic biology. Furthermore, we highlight control strategies that can be used to mitigate clinical OTOT following cell infusion such as regulating or eliminating CAR T cell activity, exogenous control of CAR expression, and local administration of CAR T cells.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Animals , Humans , Mice , Immunotherapy, Adoptive/adverse effects , T-Lymphocytes , Neoplasms/therapy , B-Cell Maturation Antigen , Receptors, Antigen, T-Cell
11.
Science ; 378(6620): eabn5647, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36356142

ABSTRACT

T cells are the major arm of the immune system responsible for controlling and regressing cancers. To identify genes limiting T cell function, we conducted genome-wide CRISPR knockout screens in human chimeric antigen receptor (CAR) T cells. Top hits were MED12 and CCNC, components of the Mediator kinase module. Targeted MED12 deletion enhanced antitumor activity and sustained the effector phenotype in CAR- and T cell receptor-engineered T cells, and inhibition of CDK8/19 kinase activity increased expansion of nonengineered T cells. MED12-deficient T cells manifested increased core Meditator chromatin occupancy at transcriptionally active enhancers-most notably for STAT and AP-1 transcription factors-and increased IL2RA expression and interleukin-2 sensitivity. These results implicate Mediator in T cell effector programming and identify the kinase module as a target for enhancing potency of antitumor T cell responses.


Subject(s)
Cyclin C , Mediator Complex , Neoplasms , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Cyclin-Dependent Kinase 8/metabolism , Cyclin-Dependent Kinases/metabolism , Mediator Complex/genetics , T-Lymphocytes/immunology , Transcription Factors/genetics , Genome-Wide Association Study , Cyclin C/genetics , Genetic Testing , Immunotherapy, Adoptive , Neoplasms/immunology , Neoplasms/therapy
12.
Nat Cancer ; 3(8): 976-993, 2022 08.
Article in English | MEDLINE | ID: mdl-35817829

ABSTRACT

Immunotherapy with anti-GD2 antibodies has advanced the treatment of children with high-risk neuroblastoma, but nearly half of patients relapse, and little is known about mechanisms of resistance to anti-GD2 therapy. Here, we show that reduced GD2 expression was significantly correlated with the mesenchymal cell state in neuroblastoma and that a forced adrenergic-to-mesenchymal transition (AMT) conferred downregulation of GD2 and resistance to anti-GD2 antibody. Mechanistically, low-GD2-expressing cell lines demonstrated significantly reduced expression of the ganglioside synthesis enzyme ST8SIA1 (GD3 synthase), resulting in a bottlenecking of GD2 synthesis. Pharmacologic inhibition of EZH2 resulted in epigenetic rewiring of mesenchymal neuroblastoma cells and re-expression of ST8SIA1, restoring surface expression of GD2 and sensitivity to anti-GD2 antibody. These data identify developmental lineage as a key determinant of sensitivity to anti-GD2 based immunotherapies and credential EZH2 inhibitors for clinical testing in combination with anti-GD2 antibody to enhance outcomes for children with neuroblastoma.


Subject(s)
Gangliosides , Neuroblastoma , Antibodies, Monoclonal , Child , Humans , Immunotherapy , Neoplasm Recurrence, Local/chemically induced , Neuroblastoma/drug therapy
13.
Clin Cancer Res ; 28(15): 3196-3206, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35435953

ABSTRACT

While the adoption of multimodal therapy including surgery, radiation, and aggressive combination chemotherapy has improved outcomes for many children with high-risk neuroblastoma, we appear to have reached a plateau in what can be achieved with cytotoxic therapies alone. Most children with cancer, including high-risk neuroblastoma, do not benefit from treatment with immune checkpoint inhibitors (ICI) that have revolutionized the treatment of many highly immunogenic adult solid tumors. This likely reflects the low tumor mutation burden as well as the downregulated MHC-I that characterizes most high-risk neuroblastomas. For these reasons, neuroblastoma represents an immunotherapeutic challenge that may be a model for the creation of effective immunotherapy for other "cold" tumors in children and adults that do not respond to ICI. The identification of strong expression of the disialoganglioside GD2 on the surface of nearly all neuroblastoma cells provided a target for immune recognition by anti-GD2 mAbs that recruit Fc receptor-expressing innate immune cells that mediate cytotoxicity or phagocytosis. Adoption of anti-GD2 antibodies into both upfront and relapse treatment protocols has dramatically increased survival rates and altered the landscape for children with high-risk neuroblastoma. This review describes how these approaches have been expanded to additional combinations and forms of immunotherapy that have already demonstrated clear clinical benefit. We also describe the efforts to identify additional immune targets for neuroblastoma. Finally, we summarize newer approaches being pursued that may well help both innate and adaptive immune cells, endogenous or genetically engineered, to more effectively destroy neuroblastoma cells, to better induce complete remission and prevent recurrence.


Subject(s)
Gangliosides , Neuroblastoma , Antibodies, Monoclonal , Child , Humans , Immunologic Factors/therapeutic use , Immunotherapy/methods , Neoplasm Recurrence, Local/drug therapy , Neuroblastoma/drug therapy , Neuroblastoma/therapy
14.
Cell ; 185(10): 1745-1763.e22, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35483375

ABSTRACT

Regulatable CAR platforms could circumvent toxicities associated with CAR-T therapy, but existing systems have shortcomings including leakiness and attenuated activity. Here, we present SNIP CARs, a protease-based platform for regulating CAR activity using an FDA-approved small molecule. Design iterations yielded CAR-T cells that manifest full functional capacity with drug and no leaky activity in the absence of drug. In numerous models, SNIP CAR-T cells were more potent than constitutive CAR-T cells and showed diminished T cell exhaustion and greater stemness. In a ROR1-based CAR lethality model, drug cessation following toxicity onset reversed toxicity, thereby credentialing the platform as a safety switch. In the same model, reduced drug dosing opened a therapeutic window that resulted in tumor eradication in the absence of toxicity. SNIP CARs enable remote tuning of CAR activity, which provides solutions to safety and efficacy barriers that are currently limiting progress in using CAR-T cells to treat solid tumors.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Neoplasms/drug therapy , Neoplasms/pathology , Peptide Hydrolases , Receptors, Antigen, T-Cell , T-Lymphocytes/pathology
15.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35101971

ABSTRACT

Metastatic osteosarcoma has a poor prognosis with a 2-y, event-free survival rate of ∼15 to 20%, highlighting the need for the advancement of efficacious therapeutics. Chimeric antigen receptor (CAR) T-cell therapy is a potent strategy for eliminating tumors by harnessing the immune system. However, clinical trials with CAR T cells in solid tumors have encountered significant challenges and have not yet demonstrated convincing evidence of efficacy for a large number of patients. A major bottleneck for the success of CAR T-cell therapy is our inability to monitor the accumulation of the CAR T cells in the tumor with clinical-imaging techniques. To address this, we developed a clinically translatable approach for labeling CAR T cells with iron oxide nanoparticles, which enabled the noninvasive detection of the iron-labeled T cells with magnetic resonance imaging (MRI), photoacoustic imaging (PAT), and magnetic particle imaging (MPI). Using a custom-made microfluidics device for T-cell labeling by mechanoporation, we achieved significant nanoparticle uptake in the CAR T cells, while preserving T-cell proliferation, viability, and function. Multimodal MRI, PAT, and MPI demonstrated homing of the T cells to osteosarcomas and off-target sites in animals administered with T cells labeled with the iron oxide nanoparticles, while T cells were not visualized in animals infused with unlabeled cells. This study details the successful labeling of CAR T cells with ferumoxytol, thereby paving the way for monitoring CAR T cells in solid tumors.


Subject(s)
Bone Neoplasms , Ferrosoferric Oxide/pharmacology , Immunotherapy, Adoptive , Magnetic Resonance Imaging , Nanoparticles/therapeutic use , Neoplasms, Experimental , Osteosarcoma , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Animals , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/immunology , Bone Neoplasms/therapy , Mice , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/immunology , Neoplasms, Experimental/therapy , Osteosarcoma/diagnostic imaging , Osteosarcoma/immunology , Osteosarcoma/therapy
16.
Nature ; 603(7903): 934-941, 2022 03.
Article in English | MEDLINE | ID: mdl-35130560

ABSTRACT

Diffuse intrinsic pontine glioma (DIPG) and other H3K27M-mutated diffuse midline gliomas (DMGs) are universally lethal paediatric tumours of the central nervous system1. We have previously shown that the disialoganglioside GD2 is highly expressed on H3K27M-mutated glioma cells and have demonstrated promising preclinical efficacy of GD2-directed chimeric antigen receptor (CAR) T cells2, providing the rationale for a first-in-human phase I clinical trial (NCT04196413). Because CAR T cell-induced brainstem inflammation can result in obstructive hydrocephalus, increased intracranial pressure and dangerous tissue shifts, neurocritical care precautions were incorporated. Here we present the clinical experience from the first four patients with H3K27M-mutated DIPG or spinal cord DMG treated with GD2-CAR T cells at dose level 1 (1 × 106 GD2-CAR T cells per kg administered intravenously). Patients who exhibited clinical benefit were eligible for subsequent GD2-CAR T cell infusions administered intracerebroventricularly3. Toxicity was largely related to the location of the tumour and was reversible with intensive supportive care. On-target, off-tumour toxicity was not observed. Three of four patients exhibited clinical and radiographic improvement. Pro-inflammatory cytokine levels were increased in the plasma and cerebrospinal fluid. Transcriptomic analyses of 65,598 single cells from CAR T cell products and cerebrospinal fluid elucidate heterogeneity in response between participants and administration routes. These early results underscore the promise of this therapeutic approach for patients with H3K27M-mutated DIPG or spinal cord DMG.


Subject(s)
Astrocytoma , Brain Stem Neoplasms , Gangliosides , Glioma , Histones , Immunotherapy, Adoptive , Mutation , Receptors, Chimeric Antigen , Astrocytoma/genetics , Astrocytoma/immunology , Astrocytoma/pathology , Astrocytoma/therapy , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/immunology , Brain Stem Neoplasms/pathology , Brain Stem Neoplasms/therapy , Child , Gangliosides/immunology , Gene Expression Profiling , Glioma/genetics , Glioma/immunology , Glioma/pathology , Glioma/therapy , Histones/genetics , Humans , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Spinal Cord Neoplasms/genetics , Spinal Cord Neoplasms/immunology , Spinal Cord Neoplasms/pathology , Spinal Cord Neoplasms/therapy
17.
Nat Med ; 28(2): 333-344, 2022 02.
Article in English | MEDLINE | ID: mdl-35027753

ABSTRACT

The disialoganglioside GD2 is overexpressed on several solid tumors, and monoclonal antibodies targeting GD2 have substantially improved outcomes for children with high-risk neuroblastoma. However, approximately 40% of patients with neuroblastoma still relapse, and anti-GD2 has not mediated significant clinical activity in any other GD2+ malignancy. Macrophages are important mediators of anti-tumor immunity, but tumors resist macrophage phagocytosis through expression of the checkpoint molecule CD47, a so-called 'Don't eat me' signal. In this study, we establish potent synergy for the combination of anti-GD2 and anti-CD47 in syngeneic and xenograft mouse models of neuroblastoma, where the combination eradicates tumors, as well as osteosarcoma and small-cell lung cancer, where the combination significantly reduces tumor burden and extends survival. This synergy is driven by two GD2-specific factors that reorient the balance of macrophage activity. Ligation of GD2 on tumor cells (a) causes upregulation of surface calreticulin, a pro-phagocytic 'Eat me' signal that primes cells for removal and (b) interrupts the interaction of GD2 with its newly identified ligand, the inhibitory immunoreceptor Siglec-7. This work credentials the combination of anti-GD2 and anti-CD47 for clinical translation and suggests that CD47 blockade will be most efficacious in combination with monoclonal antibodies that alter additional pro- and anti-phagocytic signals within the tumor microenvironment.


Subject(s)
Bone Neoplasms , CD47 Antigen , Animals , Cell Line, Tumor , Humans , Immunotherapy , Mice , Neoplasm Recurrence, Local , Phagocytosis , Tumor Microenvironment
18.
Pediatr Radiol ; 52(2): 354-366, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34046709

ABSTRACT

Gadolinium chelates have been used as standard contrast agents for clinical MRI for several decades. However, several investigators recently reported that rare Earth metals such as gadolinium are deposited in the brain for months or years. This is particularly concerning for children, whose developing brain is more vulnerable to exogenous toxins compared to adults. Therefore, a search is under way for alternative MR imaging biomarkers. The United States Food and Drug Administration (FDA)-approved iron supplement ferumoxytol can solve this unmet clinical need: ferumoxytol consists of iron oxide nanoparticles that can be detected with MRI and provide significant T1- and T2-signal enhancement of vessels and soft tissues. Several investigators including our research group have started to use ferumoxytol off-label as a new contrast agent for MRI. This article reviews the existing literature on the biodistribution of ferumoxytol in children and compares the diagnostic accuracy of ferumoxytol- and gadolinium-chelate-enhanced MRI. Iron oxide nanoparticles represent a promising new class of contrast agents for pediatric MRI that can be metabolized and are not deposited in the brain.


Subject(s)
Ferrosoferric Oxide , Gadolinium , Adult , Child , Contrast Media , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Tissue Distribution
19.
Cancer Cell ; 40(1): 53-69.e9, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34971569

ABSTRACT

Pediatric cancers often mimic fetal tissues and express proteins normally silenced postnatally that could serve as immune targets. We developed T cells expressing chimeric antigen receptors (CARs) targeting glypican-2 (GPC2), a fetal antigen expressed on neuroblastoma (NB) and several other solid tumors. CARs engineered using standard designs control NBs with transgenic GPC2 overexpression, but not those expressing clinically relevant GPC2 site density (∼5,000 molecules/cell, range 1-6 × 103). Iterative engineering of transmembrane (TM) and co-stimulatory domains plus overexpression of c-Jun lowered the GPC2-CAR antigen density threshold, enabling potent and durable eradication of NBs expressing clinically relevant GPC2 antigen density, without toxicity. These studies highlight the critical interplay between CAR design and antigen density threshold, demonstrate potent efficacy and safety of a lead GPC2-CAR candidate suitable for clinical testing, and credential oncofetal antigens as a promising class of targets for CAR T cell therapy of solid tumors.


Subject(s)
Glypicans/immunology , Immunotherapy, Adoptive , Neuroblastoma/drug therapy , Receptors, Antigen, T-Cell/metabolism , Animals , Cell Line, Tumor , Glypicans/metabolism , Humans , Immunotherapy/methods , Neuroblastoma/pathology , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays/methods
20.
Blood Cancer Discov ; 2(6): 648-665, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34778803

ABSTRACT

Chimeric antigen receptor (CAR) T cells hold promise for the treatment of acute myeloid leukemia (AML), but optimal targets remain to be defined. We demonstrate that CD93 CAR T cells engineered from a novel humanized CD93-specific binder potently kill AML in vitro and in vivo but spare hematopoietic stem and progenitor cells (HSPC). No toxicity is seen in murine models, but CD93 is expressed on human endothelial cells, and CD93 CAR T cells recognize and kill endothelial cell lines. We identify other AML CAR T-cell targets with overlapping expression on endothelial cells, especially in the context of proinflammatory cytokines. To address the challenge of endothelial-specific cross-reactivity, we provide proof of concept for NOT-gated CD93 CAR T cells that circumvent endothelial cell toxicity in a relevant model system. We also identify candidates for combinatorial targeting by profiling the transcriptome of AML and endothelial cells at baseline and after exposure to proinflammatory cytokines. SIGNIFICANCE: CD93 CAR T cells eliminate AML and spare HSPCs but exert on-target, off-tumor toxicity to endothelial cells. We show coexpression of other AML targets on endothelial cells, introduce a novel NOT-gated strategy to mitigate endothelial toxicity, and demonstrate use of high-dimensional transcriptomic profiling for rational design of combinatorial immunotherapies.See related commentary by Velasquez and Gottschalk, p. 559. This article is highlighted in the In This Issue feature, p. 549.


Subject(s)
Immunotherapy, Adoptive , Leukemia, Myeloid, Acute , Animals , Cell Line, Tumor , Endothelial Cells/pathology , Humans , Immunotherapy, Adoptive/methods , Leukemia, Myeloid, Acute/therapy , Mice , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...