Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(33): e2318190121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39106307

ABSTRACT

We developed a highly sensitive assay for detecting protein-protein interaction using chimeric receptors comprising two molecules of interest in the extracellular domain and interferon alpha and beta receptor subunit 1 or 2 (IFNAR1/2) in the intracellular domain. This intracellular IFNAR1/2 reconstitution system (IFNARRS) proved markedly more sensitive than the NanoBiT system, currently considered one of the best detection systems for protein interaction. Employing chimeric receptors with extracellular domains from the IFNγ or IL-2 receptor and the intracellular domains of IFNAR1/2, the IFNARRS system effectively identifies low IFNγ or IL-2 levels. Cells stably expressing these chimeric receptors responded to IFNγ secreted by activated T cells following various stimuli, including a specific peptide-antigen. The activation signals were further enhanced by the expression of relevant genes, such as costimulators, via IFN-stimulated response elements in the promoters. Besides IFNγ or IL-2, the IFNARRS system demonstrated the capability to detect other cytokines by using the corresponding extracellular domains from these target cytokine receptors.


Subject(s)
Interferon-gamma , Interleukin-2 , Receptor, Interferon alpha-beta , T-Lymphocytes , Humans , Receptor, Interferon alpha-beta/metabolism , Receptor, Interferon alpha-beta/genetics , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Interleukin-2/metabolism , Interferon-gamma/metabolism , Receptors, Interleukin-2/metabolism , Receptors, Interleukin-2/genetics , Protein Binding , Lymphocyte Activation , HEK293 Cells
2.
Clin Cancer Res ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848043

ABSTRACT

PURPOSE: Uterine leiomyosarcoma (LMS) is an aggressive sarcoma and a subset of which exhibit DNA repair defects. Polo-like kinase 4 (PLK4) precisely modulates mitosis, and its inhibition causes chromosome missegregation and increased DNA damage. We hypothesize that PLK4 inhibition is an effective LMS treatment. EXPERIMENTAL DESIGN: Genomic profiling of clinical uterine LMS samples was performed, and homologous recombination (HR) deficiency scores were calculated. PLK4 inhibitor (CFI-400945) with and without an ataxia telangiectasia mutated (ATM) inhibitor (AZD0156) were tested in vitro on gynecological sarcoma cell lines SK-UT-1, and SKN, and SK-LMS-1. Findings were validated in vivo using the SK-UT-1 xenograft model in Balb/c nude mouse model. The effects of CFI-400945 were also evaluated in a BRCA2 knockout SK-UT-1 cell line. The mechanisms of DNA repair were analyzed using a DNA damage reporter assay. RESULTS: Uterine LMS had a high HR deficiency score, overexpressed PLK4 mRNA, and displayed mutations in genes responsible for DNA repair. CFI-400945 demonstrated effective antitumor activity in vitro and in vivo. The addition of AZD0156 resulted in drug synergism, largely due to a preference for nonhomologous end-joining (NHEJ) DNA repair. Compared to wild-type cells, BRCA2 knockouts were more sensitive to PLK4 inhibition when both HR and NHEJ repairs were impaired. CONCLUSIONS: Uterine LMS with DNA repair defects is sensitive to PLK4 inhibition because of the effects of chromosome missegregation and increased DNA damage. Loss-of-function BRCA2 alterations or pharmacological inhibition of ATM enhanced the efficacy of PLK4 inhibitor. Genomic profiling of an advanced-stage or recurrent uterine LMS may guide therapy.

SELECTION OF CITATIONS
SEARCH DETAIL