Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Synchrotron Radiat ; 30(Pt 4): 758-765, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37233734

ABSTRACT

Electro-chemo-mechanical (ECM) coupling refers to mechanical deformation due to electrochemically driven compositional change in a solid. An ECM actuator producing micrometre-size displacements and long-term stability at room temperature was recently reported, comprising a 20 mol% Gd-doped ceria (20GDC), a solid electrolyte membrane, placed between two working bodies made of TiOx/20GDC (Ti-GDC) nanocomposites with Ti concentration of 38 mol%. The volumetric changes originating from oxidation or reduction in the local TiOx units are hypothesized to be the origin of mechanical deformation in the ECM actuator. Studying the Ti concentration-dependent structural changes in the Ti-GDC nanocomposites is therefore required for (i) understanding the mechanism of dimensional changes in the ECM actuator and (ii) maximizing the ECM response. Here, the systematic investigation of the local structure of the Ti and Ce ions in Ti-GDC over a broad range of Ti concentrations using synchrotron X-ray absorption spectroscopy and X-ray diffraction is reported. The main finding is that, depending on the Ti concentration, Ti atoms either form a cerium titanate or segregate into a TiO2 anatase-like phase. The transition region between these two regimes with Ti(IV) concentration between 19% and 57% contained strongly disordered TiOx units dispersed in 20GDC containing Ce(III) and Ce(IV) and hence rich with oxygen vacancies. As a result, this transition region is proposed to be the most advantageous for developing ECM-active materials.


Subject(s)
Nanocomposites , Oxidation-Reduction , Nanocomposites/chemistry , X-Ray Diffraction , Catalysis , Electrolytes
2.
J Synchrotron Radiat ; 28(Pt 5): 1511-1517, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34475298

ABSTRACT

In functional materials, the local environment around active species that may contain just a few nearest-neighboring atomic shells often changes in response to external conditions. Strong disorder in the local environment poses a challenge to commonly used extended X-ray absorption fine structure (EXAFS) analysis. Furthermore, the dilute concentrations of absorbing atoms, small sample size and the constraints of the experimental setup often limit the utility of EXAFS for structural analysis. X-ray absorption near-edge structure (XANES) has been established as a good alternative method to provide local electronic and geometric information of materials. The pre-edge region in the XANES spectra of metal compounds is a useful but relatively under-utilized resource of information of the chemical composition and structural disorder in nano-materials. This study explores two examples of materials in which the transition metal environment is either relatively symmetric or strongly asymmetric. In the former case, EXAFS results agree with those obtained from the pre-edge XANES analysis, whereas in the latter case they are in a seeming contradiction. The two observations are reconciled by revisiting the limitations of EXAFS in the case of a strong, asymmetric bond length disorder, expected for mixed-valence oxides, and emphasize the utility of the pre-edge XANES analysis for detecting local heterogeneities in structural and compositional motifs.

3.
Adv Mater ; 31(44): e1904733, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31532884

ABSTRACT

Symmetry-imposed restrictions on the number of available pyroelectric and piezoelectric materials remain a major limitation as 22 out of 32 crystallographic material classes exhibit neither pyroelectricity nor piezoelectricity. Yet, by breaking the lattice symmetry it is possible to circumvent this limitation. Here, using a unique technique for measuring transient currents upon rapid heating, direct experimental evidence is provided that despite the fact that bulk SrTiO3 is not pyroelectric, the (100) surface of TiO2 -terminated SrTiO3 is intrinsically pyroelectric at room temperature. The pyroelectric layer is found to be ≈1 nm thick and, surprisingly, its polarization is comparable with that of strongly polar materials such as BaTiO3 . The pyroelectric effect can be tuned ON/OFF by the formation or removal of a nanometric SiO2 layer. Using density functional theory, the pyroelectricity is found to be a result of polar surface relaxation, which can be suppressed by varying the lattice symmetry breaking using a SiO2 capping layer. The observation of pyroelectricity emerging at the SrTiO3 surface also implies that it is intrinsically piezoelectric. These findings may pave the way for observing and tailoring piezo- and pyroelectricity in any material through appropriate breaking of symmetry at surfaces and artificial nanostructures such as heterointerfaces and superlattices.

SELECTION OF CITATIONS
SEARCH DETAIL
...