Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Nat Metab ; 6(3): 433-447, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38504132

ABSTRACT

Mitochondrial dysfunction and low nicotinamide adenine dinucleotide (NAD+) levels are hallmarks of skeletal muscle ageing and sarcopenia1-3, but it is unclear whether these defects result from local changes or can be mediated by systemic or dietary cues. Here we report a functional link between circulating levels of the natural alkaloid trigonelline, which is structurally related to nicotinic acid4, NAD+ levels and muscle health in multiple species. In humans, serum trigonelline levels are reduced with sarcopenia and correlate positively with muscle strength and mitochondrial oxidative phosphorylation in skeletal muscle. Using naturally occurring and isotopically labelled trigonelline, we demonstrate that trigonelline incorporates into the NAD+ pool and increases NAD+ levels in Caenorhabditis elegans, mice and primary myotubes from healthy individuals and individuals with sarcopenia. Mechanistically, trigonelline does not activate GPR109A but is metabolized via the nicotinate phosphoribosyltransferase/Preiss-Handler pathway5,6 across models. In C. elegans, trigonelline improves mitochondrial respiration and biogenesis, reduces age-related muscle wasting and increases lifespan and mobility through an NAD+-dependent mechanism requiring sirtuin. Dietary trigonelline supplementation in male mice enhances muscle strength and prevents fatigue during ageing. Collectively, we identify nutritional supplementation of trigonelline as an NAD+-boosting strategy with therapeutic potential for age-associated muscle decline.


Subject(s)
Alkaloids , Sarcopenia , Humans , Male , Mice , Animals , Sarcopenia/drug therapy , Sarcopenia/prevention & control , Sarcopenia/metabolism , NAD/metabolism , Caenorhabditis elegans , Aging , Muscle, Skeletal/metabolism , Alkaloids/pharmacology , Alkaloids/therapeutic use , Alkaloids/metabolism
2.
J Am Chem Soc ; 145(9): 5320-5329, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36826345

ABSTRACT

Whereas modern proteins rely on a quasi-universal repertoire of 20 canonical amino acids (AAs), numerous lines of evidence suggest that ancient proteins relied on a limited alphabet of 10 "early" AAs and that the 10 "late" AAs were products of biosynthetic pathways. However, many nonproteinogenic AAs were also prebiotically available, which begs two fundamental questions: Why do we have the current modern amino acid alphabet and would proteins be able to fold into globular structures as well if different amino acids comprised the genetic code? Here, we experimentally evaluate the solubility and secondary structure propensities of several prebiotically relevant amino acids in the context of synthetic combinatorial 25-mer peptide libraries. The most prebiotically abundant linear aliphatic and basic residues were incorporated along with or in place of other early amino acids to explore these alternative sequence spaces. The results show that foldability was likely a critical factor in the selection of the canonical alphabet. Unbranched aliphatic amino acids were purged from the proteinogenic alphabet despite their high prebiotic abundance because they generate polypeptides that are oversolubilized and have low packing efficiency. Surprisingly, we find that the inclusion of a short-chain basic amino acid also decreases polypeptides' secondary structure potential, for which we suggest a biophysical model. Our results support the view that, despite lacking basic residues, the early canonical alphabet was remarkably adaptive at supporting protein folding and explain why basic residues were only incorporated at a later stage of protein evolution.


Subject(s)
Amino Acids , Proteins , Amino Acids/chemistry , Proteins/chemistry , Peptides/genetics , Protein Folding , Peptide Library
3.
Cell Metab ; 34(12): 1947-1959.e5, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36476934

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor in mammals and microbes. Here we use isotope tracing to investigate the precursors supporting NAD synthesis in the gut microbiome of mice. We find that dietary NAD precursors are absorbed in the proximal part of the gastrointestinal tract and not available to microbes in the distal gut. Instead, circulating host nicotinamide enters the gut lumen and supports microbial NAD synthesis. The microbiome converts host-derived nicotinamide into nicotinic acid, which is used for NAD synthesis in host tissues and maintains circulating nicotinic acid levels even in the absence of dietary consumption. Moreover, the main route from oral nicotinamide riboside, a widely used nutraceutical, to host NAD is via conversion into nicotinic acid by the gut microbiome. Thus, we establish the capacity for circulating host micronutrients to feed the gut microbiome, and in turn be transformed in a manner that enhances host metabolic flexibility.


Subject(s)
NAD , Niacin , Mice , Animals , Niacinamide/pharmacology , Mammals
4.
Molecules ; 27(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35630705

ABSTRACT

We report the synthesis of vitamin B1, B2, and B3 derived nucleotides and dinucleotides generated either through mechanochemical or solution phase chemistry. Under the explored conditions, adenosine and thiamine proved to be particularly amenable to milling conditions. Following optimization of the chemistry related to the formation pyrophosphate bonds, mixed dinucleotides of adenine and thiamine (vitamin B1), riboflavin (vitamin B2), nicotinamide riboside and 3-carboxamide 4-pyridone riboside (both vitamin B3 derivatives) were generated in good yields. Furthermore, we report an efficient synthesis of the MW+4 isotopologue of NAD+ for which deuterium incorporation is present on either side of the dinucleotidic linkage, poised for isotopic tracing experiments by mass spectrometry. Many of these mixed species are novel and present unexplored possibilities to simultaneously enhance or modulate cofactor transporters and enzymes of independent biosynthetic pathways.


Subject(s)
Niacin , Niacin/metabolism , Riboflavin , Thiamine/analysis
5.
Mol Biol Evol ; 39(3)2022 03 02.
Article in English | MEDLINE | ID: mdl-35137196

ABSTRACT

RNA-peptide/protein interactions have been of utmost importance to life since its earliest forms, reaching even before the last universal common ancestor (LUCA). However, the ancient molecular mechanisms behind this key biological interaction remain enigmatic because extant RNA-protein interactions rely heavily on positively charged and aromatic amino acids that were absent (or heavily under-represented) in the early pre-LUCA evolutionary period. Here, an RNA-binding variant of the ribosomal uL11 C-terminal domain was selected from an approximately 1010 library of partially randomized sequences, all composed of ten prebiotically plausible canonical amino acids. The selected variant binds to the cognate RNA with a similar overall affinity although it is less structured in the unbound form than the wild-type protein domain. The variant complex association and dissociation are both slower than for the wild-type, implying different mechanistic processes involved. The profile of the wild-type and mutant complex stabilities along with molecular dynamics simulations uncovers qualitative differences in the interaction modes. In the absence of positively charged and aromatic residues, the mutant uL11 domain uses ion bridging (K+/Mg2+) interactions between the RNA sugar-phosphate backbone and glutamic acid residues as an alternative source of stabilization. This study presents experimental support to provide a new perspective on how early protein-RNA interactions evolved, where the lack of aromatic/basic residues may have been compensated by acidic residues plus metal ions.


Subject(s)
Amino Acids , RNA , Amino Acids/genetics , Ions , Molecular Dynamics Simulation , RNA/genetics
6.
J R Soc Interface ; 19(187): 20210641, 2022 02.
Article in English | MEDLINE | ID: mdl-35135297

ABSTRACT

Recent developments in Origins of Life research have focused on substantiating the narrative of an abiotic emergence of nucleic acids from organic molecules of low molecular weight, a paradigm that typically sidelines the roles of peptides. Nevertheless, the simple synthesis of amino acids, the facile nature of their activation and condensation, their ability to recognize metals and cofactors and their remarkable capacity to self-assemble make peptides (and their analogues) favourable candidates for one of the earliest functional polymers. In this mini-review, we explore the ramifications of this hypothesis. Diverse lines of research in molecular biology, bioinformatics, geochemistry, biophysics and astrobiology provide clues about the progression and early evolution of proteins, and lend credence to the idea that early peptides served many central prebiotic roles before they were encodable by a polynucleotide template, in a putative 'peptide-polynucleotide stage'. For example, early peptides and mini-proteins could have served as catalysts, compartments and structural hubs. In sum, we shed light on the role of early peptides and small proteins before and during the nucleotide world, in which nascent life fully grasped the potential of primordial proteins, and which has left an imprint on the idiosyncratic properties of extant proteins.


Subject(s)
Nucleic Acids , Origin of Life , Nucleotides , Peptides/chemistry , Proteins
7.
Sensors (Basel) ; 21(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34960600

ABSTRACT

Continuous monitoring of ice cover belongs to the key tasks of modern climate research, providing up-to-date information on climate change in cold regions. While a strong advance in ice monitoring worldwide has been provided by the recent development of remote sensing methods, quantification of seasonal ice cover is impossible without on-site autonomous measurements of the mass and heat budget. In the present study, we propose an autonomous monitoring system for continuous in situ measuring of vertical temperature distribution in the near-ice air, the ice strata and the under-ice water layer for several months with simultaneous records of solar radiation incoming at the lake surface and passing through the snow and ice covers as well as snow and ice thicknesses. The use of modern miniature analog and digital sensors made it possible to make a compact, energy efficient measurement system with high precision and spatial resolution and characterized by easy deployment and transportation. In particular, the high resolution of the ice thickness probe of 0.05 mm allows to resolve the fine-scale processes occurring in low-flow environments, such as freshwater lakes. Several systems were tested in numerous studies in Lake Baikal and demonstrated a high reliability in deriving the ice heat balance components during ice-covered periods.


Subject(s)
Ice Cover , Lakes , Climate Change , Reproducibility of Results , Snow
8.
Cell Rep ; 37(5): 109917, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731617

ABSTRACT

Assembly and disassembly of DNA repair protein complexes at DNA damage sites are essential for maintaining genomic integrity. Investigating factors coordinating assembly of the base excision repair (BER) proteins DNA polymerase ß (Polß) and XRCC1 to DNA lesion sites identifies a role for Polß in regulating XRCC1 disassembly from DNA repair complexes and, conversely, demonstrates Polß's dependence on XRCC1 for complex assembly. LivePAR, a genetically encoded probe for live-cell imaging of poly(ADP-ribose) (PAR), reveals that Polß and XRCC1 require PAR for repair-complex assembly, with PARP1 and PARP2 playing unique roles in complex dynamics. Further, BER complex assembly is modulated by attenuation/augmentation of NAD+ biosynthesis. Finally, SIRT6 does not modulate PARP1 or PARP2 activation but does regulate XRCC1 recruitment, leading to diminished Polß abundance at sites of DNA damage. These findings highlight coordinated yet independent roles for PARP1, PARP2, and SIRT6 and their regulation by NAD+ bioavailability to facilitate BER.


Subject(s)
DNA Breaks, Single-Stranded , DNA Repair , DNA, Neoplasm/metabolism , NAD/metabolism , Neoplasms/enzymology , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Sirtuins/metabolism , A549 Cells , DNA Polymerase beta/genetics , DNA Polymerase beta/metabolism , DNA, Neoplasm/genetics , Humans , Kinetics , Microscopy, Confocal , Neoplasms/genetics , Neoplasms/pathology , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerases/genetics , Sirtuins/genetics , X-ray Repair Cross Complementing Protein 1/genetics , X-ray Repair Cross Complementing Protein 1/metabolism
9.
Sensors (Basel) ; 21(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34833734

ABSTRACT

An automatic hydro-meteorological station (AHMS) was designed to monitor the littoral zone of Lake Baikal in areas with high anthropogenic pressure. The developed AHMS was installed near the Bolshiye Koty settlement (southern basin). This AHMS is the first experience focused on obtaining the necessary competencies for the development of a monitoring network of the Baikal natural territory. To increase the flexibility of adjustment and repeatability, we developed AHMS as a low-cost modular system. AHMS is equipped with a weather station and sensors measuring water temperature, pH, dissolved oxygen, redox potential, conductivity, chlorophyll-a, and turbidity. This article describes the main AHMS functions (hardware and software) and measures taken to ensure data quality control. We present the results of the first two periods of its operation. The data acquired during this periods have demonstrated that, to obtain accurate measurements and to detect and correct errors that were mainly due to biofouling of the sensors and calibration bias, a correlation between AHMS and laboratory studies is necessary for parameters such as pH and chlorophyll-a. The gained experience should become the basis for the further development of the monitoring network of the Baikal natural territory.


Subject(s)
Environmental Monitoring , Lakes , Chlorophyll A , Meteorology , Temperature
10.
NAR Cancer ; 3(4): zcab044, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34806016

ABSTRACT

Elevated expression of the DNA damage response proteins PARP1 and poly(ADP-ribose) glycohydrolase (PARG) in glioma stem cells (GSCs) suggests that glioma may be a unique target for PARG inhibitors (PARGi). While PARGi-induced cell death is achieved when combined with ionizing radiation, as a single agent PARG inhibitors appear to be mostly cytostatic. Supplementation with the NAD+ precursor dihydronicotinamide riboside (NRH) rapidly increased NAD+ levels in GSCs and glioma cells, inducing PARP1 activation and mild suppression of replication fork progression. Administration of NRH+PARGi triggers hyperaccumulation of poly(ADP-ribose) (PAR), intra S-phase arrest and apoptosis in GSCs but minimal PAR induction or cytotoxicity in normal astrocytes. PAR accumulation is regulated by select PARP1- and PAR-interacting proteins. The involvement of XRCC1 highlights the base excision repair pathway in responding to replication stress while enhanced interaction of PARP1 with PCNA, RPA and ORC2 upon PAR accumulation implicates replication associated PARP1 activation and assembly with pre-replication complex proteins upon initiation of replication arrest, the intra S-phase checkpoint and the onset of apoptosis.

11.
Int J Mol Sci ; 22(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34638936

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) and its reduced form (NADH) are coenzymes employed in hundreds of metabolic reactions. NAD+ also serves as a substrate for enzymes such as sirtuins, poly(ADP-ribose) polymerases (PARPs) and ADP-ribosyl cyclases. Given the pivotal role of NAD(H) in health and disease, studying NAD+ metabolism has become essential to monitor genetic- and/or drug-induced perturbations related to metabolic status and diseases (such as ageing, cancer or obesity), and its possible therapies. Here, we present a strategy based on liquid chromatography-tandem mass spectrometry (LC-MS/MS), for the analysis of the NAD+ metabolome in biological samples. In this method, hydrophilic interaction chromatography (HILIC) was used to separate a total of 18 metabolites belonging to pathways leading to NAD+ biosynthesis, including precursors, intermediates and catabolites. As redox cofactors are known for their instability, a sample preparation procedure was developed to handle a variety of biological matrices: cell models, rodent tissues and biofluids, as well as human biofluids (urine, plasma, serum, whole blood). For clinical applications, quantitative LC-MS/MS for a subset of metabolites was demonstrated for the analysis of the human whole blood of nine volunteers. Using this developed workflow, our methodology allows studying NAD+ biology from mechanistic to clinical applications.


Subject(s)
Metabolome , NAD/biosynthesis , Plasma/metabolism , Serum/metabolism , Tandem Mass Spectrometry/methods , Urine/physiology , Animals , Blood Donors , Chromatography, Liquid/methods , Hep G2 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Metabolomics/methods , Mice , Mice, Inbred C57BL , Monitoring, Physiologic/methods , Oxidation-Reduction , Pilot Projects , Plasma/chemistry , Serum/chemistry , Urine/chemistry
12.
Biology (Basel) ; 10(10)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34681163

ABSTRACT

This work simulates the consequences of HIREC using stone sculpins as model organisms. Sex-dependent effects of long-term noise exposure at mean sound pressure levels of 160-179 dB re 1 µPa (SPLpk-pk) were measured. We applied a multilevel approach to testing the stress response: a comparative analysis of the macula sacculi and an assessment of hematological and molecular stress responses. Noise exposure resulted in hair cell loss, changes in some cytometric parameters in blood, and an increase in the number of functionally active mitochondria in the red blood cells of males and its decrease in females, demonstrating a mitochondrial allostatic load and depletion of functional reserve. Finally, a statistically significant decrease in the telomerase activity of the auditory epithelium and a shortening of telomere length in the brain as molecular markers of stress were observed after noise exposure only in females. No significant decrease in telomerase activity and shortening of telomere length in nerve target tissues were observed in stressed males. However, we recorded an increase in the telomerase activity in male gonads. This sex-dependent difference in load may be associated with accelerated cellular aging in females and lower stress-related long-term risk in males. In this article, we discuss possible reasons for these noise-induced stress effects.

13.
PeerJ Comput Sci ; 7: e526, 2021.
Article in English | MEDLINE | ID: mdl-34084929

ABSTRACT

Today, increased attention is drawn towards network representation learning, a technique that maps nodes of a network into vectors of a low-dimensional embedding space. A network embedding constructed this way aims to preserve nodes similarity and other specific network properties. Embedding vectors can later be used for downstream machine learning problems, such as node classification, link prediction and network visualization. Naturally, some networks have text information associated with them. For instance, in a citation network, each node is a scientific paper associated with its abstract or title; in a social network, all users may be viewed as nodes of a network and posts of each user as textual attributes. In this work, we explore how combining existing methods of text and network embeddings can increase accuracy for downstream tasks and propose modifications to popular architectures to better capture textual information in network embedding and fusion frameworks.

15.
ACS Chem Biol ; 16(4): 604-614, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33784074

ABSTRACT

All life forms require nicotinamide adenine dinucleotide, NAD+, and its reduced form NADH. They are redox partners in hundreds of cellular enzymatic reactions. Changes in the intracellular levels of total NAD (NAD+ + NADH) and the (NAD+/NADH) ratio can cause cellular dysfunction. When not present in protein complexes, NADH and its phosphorylated form NADPH degrade through intricate mechanisms. Replenishment of a declining total NAD pool can be achieved with biosynthetic precursors that include one of the reduced forms of nicotinamide riboside (NR+), NRH. NRH, like NADH and NADPH, is prone to degradation via oxidation, hydration, and isomerization and, as such, is an excellent model compound to rationalize the nonenzymatic metabolism of NAD(P)H in a biological context. Here, we report on the stability of NRH and its propensity to isomerize and irreversibly degrade. We also report the preparation of two of its naturally occurring isomers, their chemical stability, their reactivity toward NRH-processing enzymes, and their cell-specific cytotoxicity. Furthermore, we identify a mechanism by which NRH degradation causes covalent peptide modifications, a process that could expose a novel type of NADH-protein modifications and correlate NADH accumulation with "protein aging." This work highlights the current limitations in detecting NADH's endogenous catabolites and in establishing the capacity for inducing cellular dysfunction.


Subject(s)
Niacinamide/analogs & derivatives , Pyridinium Compounds/chemistry , Isomerism , NAD/chemistry , Niacinamide/chemistry , Oxidation-Reduction
16.
Nat Commun ; 12(1): 1631, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712585

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is a key molecule in cellular bioenergetics and signalling. Various bacterial pathogens release NADase enzymes into the host cell that deplete the host's NAD+ pool, thereby causing rapid cell death. Here, we report the identification of NADases on the surface of fungi such as the pathogen Aspergillus fumigatus and the saprophyte Neurospora crassa. The enzymes harbour a tuberculosis necrotizing toxin (TNT) domain and are predominately present in pathogenic species. The 1.6 Å X-ray structure of the homodimeric A. fumigatus protein reveals unique properties including N-linked glycosylation and a Ca2+-binding site whose occupancy regulates activity. The structure in complex with a substrate analogue suggests a catalytic mechanism that is distinct from those of known NADases, ADP-ribosyl cyclases and transferases. We propose that fungal NADases may convey advantages during interaction with the host or competing microorganisms.


Subject(s)
Fungal Proteins/chemistry , Fungal Proteins/isolation & purification , Fungal Proteins/metabolism , NAD+ Nucleosidase/chemistry , NAD+ Nucleosidase/isolation & purification , NAD+ Nucleosidase/metabolism , ADP-ribosyl Cyclase/metabolism , Animals , Aspergillus fumigatus/enzymology , Aspergillus fumigatus/genetics , Aspergillus fumigatus/metabolism , Aspergillus fumigatus/pathogenicity , Crystallography, X-Ray , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Membrane Proteins/chemistry , Membrane Proteins/isolation & purification , Membrane Proteins/metabolism , Models, Molecular , NAD/metabolism , NAD+ Nucleosidase/genetics , Neurospora crassa/enzymology , Neurospora crassa/genetics , Neurospora crassa/metabolism , Neurospora crassa/pathogenicity , Protein Conformation , Sf9 Cells , Signal Transduction
17.
Protein Sci ; 30(5): 1022-1034, 2021 05.
Article in English | MEDLINE | ID: mdl-33739538

ABSTRACT

The wide variety of protein structures and functions results from the diverse properties of the 20 canonical amino acids. The generally accepted hypothesis is that early protein evolution was associated with enrichment of a primordial alphabet, thereby enabling increased protein catalytic efficiencies and functional diversification. Aromatic amino acids were likely among the last additions to genetic code. The main objective of this study was to test whether enzyme catalysis can occur without the aromatic residues (aromatics) by studying the structure and function of dephospho-CoA kinase (DPCK) following aromatic residue depletion. We designed two variants of a putative DPCK from Aquifex aeolicus by substituting (a) Tyr, Phe and Trp or (b) all aromatics (including His). Their structural characterization indicates that substituting the aromatics does not markedly alter their secondary structures but does significantly loosen their side chain packing and increase their sizes. Both variants still possess ATPase activity, although with 150-300 times lower efficiency in comparison with the wild-type phosphotransferase activity. The transfer of the phosphate group to the dephospho-CoA substrate becomes heavily uncoupled and only the His-containing variant is still able to perform the phosphotransferase reaction. These data support the hypothesis that proteins in the early stages of life could support catalytic activities, albeit with low efficiencies. An observed significant contraction upon ligand binding is likely important for appropriate organization of the active site. Formation of firm hydrophobic cores, which enable the assembly of stably structured active sites, is suggested to provide a selective advantage for adding the aromatic residues.


Subject(s)
Bacterial Proteins/chemistry , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Amino Acid Substitution , Aquifex/enzymology , Aquifex/genetics , Bacterial Proteins/genetics , Catalysis , Catalytic Domain , Mutagenesis, Site-Directed , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Structure, Secondary
18.
Int J Mol Sci ; 22(3)2021 Jan 24.
Article in English | MEDLINE | ID: mdl-33498933

ABSTRACT

As catabolites of nicotinamide possess physiological relevance, pyridones are often included in metabolomics measurements and associated with pathological outcomes in acute kidney injury (AKI). Pyridones are oxidation products of nicotinamide, its methylated form, and its ribosylated form. While they are viewed as markers of over-oxidation, they are often wrongly reported or mislabeled. To address this, we provide a comprehensive characterization of these catabolites of vitamin B3, justify their nomenclature, and differentiate between the biochemical pathways that lead to their generation. Furthermore, we identify an enzymatic and a chemical process that accounts for the formation of the ribosylated form of these pyridones, known to be cytotoxic. Finally, we demonstrate that the ribosylated form of one of the pyridones, the 4-pyridone-3-carboxamide riboside (4PYR), causes HepG3 cells to die by autophagy; a process that occurs at concentrations that are comparable to physiological concentrations of this species in the plasma in AKI patients.


Subject(s)
NAD/metabolism , Niacinamide/metabolism , Pyridones/metabolism , Autophagy , Cell Line, Tumor , HEK293 Cells , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/physiopathology , Pyridones/chemistry , Pyridones/pharmacology , Pyridones/therapeutic use
19.
J Clin Invest ; 131(6)2021 03 15.
Article in English | MEDLINE | ID: mdl-33507883

ABSTRACT

Omega-3 fatty acids from fish oil reduce triglyceride levels in mammals, yet the mechanisms underlying this effect have not been fully clarified, despite the clinical use of omega-3 ethyl esters to treat severe hypertriglyceridemia and reduce cardiovascular disease risk in humans. Here, we identified in bile a class of hypotriglyceridemic omega-3 fatty acid-derived N-acyl taurines (NATs) that, after dietary omega-3 fatty acid supplementation, increased to concentrations similar to those of steroidal bile acids. The biliary docosahexaenoic acid-containing (DHA-containing) NAT C22:6 NAT was increased in human and mouse plasma after dietary omega-3 fatty acid supplementation and potently inhibited intestinal triacylglycerol hydrolysis and lipid absorption. Supporting this observation, genetic elevation of endogenous NAT levels in mice impaired lipid absorption, whereas selective augmentation of C22:6 NAT levels protected against hypertriglyceridemia and fatty liver. When administered pharmacologically, C22:6 NAT accumulated in bile and reduced high-fat diet-induced, but not sucrose-induced, hepatic lipid accumulation in mice, suggesting that C22:6 NAT is a negative feedback mediator that limits excess intestinal lipid absorption. Thus, biliary omega-3 NATs may contribute to the hypotriglyceridemic mechanism of action of fish oil and could influence the design of more potent omega-3 fatty acid-based therapeutics.


Subject(s)
Fatty Acids, Omega-3/administration & dosage , Hypertriglyceridemia/diet therapy , Triglycerides/metabolism , Amidohydrolases/deficiency , Amidohydrolases/genetics , Amidohydrolases/metabolism , Animals , Bile/metabolism , Disease Models, Animal , Docosahexaenoic Acids/analogs & derivatives , Docosahexaenoic Acids/metabolism , Fatty Acids, Omega-3/metabolism , Fatty Liver/metabolism , Fatty Liver/prevention & control , Humans , Hypertriglyceridemia/metabolism , Hypolipidemic Agents/administration & dosage , Hypolipidemic Agents/metabolism , Intestinal Absorption/drug effects , Lipid Metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mutant Proteins/genetics , Mutant Proteins/metabolism , Point Mutation , Taurine/analogs & derivatives , Taurine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...