Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br Dent J ; 229(7): 450-458, 2020 10.
Article in English | MEDLINE | ID: mdl-33037365

ABSTRACT

Minimally invasive (MI) concepts in restorative dentistry in the year 2020 request from the practitioner not only a scientifically supported rationale for carious tissue removal/excavation and defect-oriented, biological cavity preparation, but also a deep understanding of how to ensure a biomechanically stable and durable restoration in different clinical situations by applying different restorative options. Bio-interactive materials play an increasingly relevant role, as they not only replace diseased or lost tissue, but also optimise tissue mineral recovery (among other properties) when used in restorative and preventive dentistry. Indeed, this is of certain interest in MI restorative dentistry, especially in those cases where gap formation jeopardises the integrity of the margins along resin composite restorations, causing penetration of bacteria and eventually promoting the formation of secondary caries. Recently, the interest in whether ion-releasing materials may reduce such biofilm penetration into margin gaps and reduce such a risk for development and propagation of secondary caries is growing significantly among clinicians and scientists. The aim of this article was to explore mechanisms involved in the process that allow mineral deposition at the interface between such materials and dentine, and to describe how conventional 'bioactive' restorative materials currently available on the market may benefit treatments in MI dentistry.


Subject(s)
Dental Caries , Dental Cavity Preparation , Composite Resins , Dental Care , Dental Caries/therapy , Dental Materials , Dental Restoration, Permanent , Humans
2.
Iran Endod J ; 15(3): 155-165, 2020.
Article in English | MEDLINE | ID: mdl-36703803

ABSTRACT

Introduction: This study aimed at assessing the quantitative effect of calcium hydroxide, 2% chlorhexidine gel, and 1.5% chlorhexidine linked to xanthan gel specifically against intratubular bacteria. Methods and Materials: Fifty-two semi-cylindrical bovine dentin specimens were infected with Enterococcus (E.) faecalis by centrifugation with subsequent 7-days incubation. The surface of specimens was disinfected with 3% H2O2. Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and the count of bacterial colony-forming units (CFU/mg) were used to assess dentin infection. A total of 40 specimens were incubated for 2 weeks with one of the intracanal medication applied (10 samples for each group): 1) calcium hydroxide, 2) 2% chlorhexidine gel, 3) 1.5% chlorhexidine linked to xanthan gel and 4) sterile saline. Final passive ultrasonic irrigation with 3% sodium hypochlorite was performed in half of the total specimens. The effect of intracanal medications and irrigation against intratubular bacteria was assessed by bacterial culturing of dentin shavings. Two-Way ANOVA model was applied followed by post-hoc Tukey's test for multiple pair-wise comparisons of mean CFU/mg values. Results: SEM, CLSM, and bacterial culturing confirmed the absence of the surface biofilm on the root canal wall and showed vital intratubular bacteria at the depth up to 700  m. Two-week application of 1.5% chlorhexidine with xanthan gel and 2% chlorhexidine gel significantly decreased intratubular bacterial counts compared with saline (P=0.0003 and P=0.0005, respectively). Subsequent passive ultrasonic irrigation with 3% sodium hypochlorite significantly reduced the number of intratubular bacteria in all groups except for the group with 1.5% chlorhexidine-xanthan gel (P=0.0054). Conclusion: This modified ex vivo model study showed ultrasonically activated irrigation with sodium hypochlorite had greater effect on intratubular bacteria counts compared with 2-week application of intracanal medications.

SELECTION OF CITATIONS
SEARCH DETAIL
...