Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
2.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Article in English | MEDLINE | ID: mdl-38697936

ABSTRACT

In polar regions, global warming has accelerated the melting of glacial and buried ice, resulting in meltwater run-off and the mobilization of surface nutrients. Yet, the short-term effects of altered nutrient regimes on the diversity and function of soil microbiota in polyextreme environments such as Antarctica, remains poorly understood. We studied these effects by constructing soil microcosms simulating augmented carbon, nitrogen, and moisture. Addition of nitrogen significantly decreased the diversity of Antarctic soil microbial assemblages, compared with other treatments. Other treatments led to a shift in the relative abundances of these microbial assemblages although the distributional patterns were random. Only nitrogen treatment appeared to lead to distinct community structural patterns, with increases in abundance of Proteobacteria (Gammaproteobateria) and a decrease in Verrucomicrobiota (Chlamydiae and Verrucomicrobiae).The effects of extracellular enzyme activities and soil parameters on changes in microbial taxa were also significant following nitrogen addition. Structural equation modeling revealed that nutrient source and extracellular enzyme activities were positive predictors of microbial diversity. Our study highlights the effect of nitrogen addition on Antarctic soil microorganisms, supporting evidence of microbial resilience to nutrient increases. In contrast with studies suggesting that these communities may be resistant to change, Antarctic soil microbiota responded rapidly to augmented nutrient regimes.


Subject(s)
Bacteria , Carbon , Microbiota , Nitrogen , Nutrients , Soil Microbiology , Soil , Antarctic Regions , Nitrogen/metabolism , Bacteria/genetics , Bacteria/enzymology , Bacteria/metabolism , Nutrients/metabolism , Soil/chemistry , Carbon/metabolism , Biodiversity , RNA, Ribosomal, 16S/genetics
3.
ISME Commun ; 4(1): ycae065, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38800127

ABSTRACT

Single-stranded (ss) DNA viruses are ubiquitous and constitute some of the most diverse entities on Earth. Most studies have focused on ssDNA viruses from terrestrial environments resulting in a significant deficit in benthic ecosystems including aphotic zones of the South Indian Ocean (SIO). Here, we assess the diversity and phylogeny of ssDNA in deep waters of the SIO using a combination of established viral taxonomy tools and a Hidden Markov Model based approach. Replication initiator protein-associated (Rep) phylogenetic reconstruction and sequence similarity networks were used to show that the SIO hosts divergent and as yet unknown circular Rep-encoding ssDNA viruses. Several sequences appear to represent entirely novel families, expanding the repertoire of known ssDNA viruses. Results suggest that a small proportion of these viruses may be circular genetic elements, which may strongly influence the diversity of both eukaryotes and prokaryotes in the SIO. Taken together, our data show that the SIO harbours a diverse assortment of previously unknown ssDNA viruses. Due to their potential to infect a variety of hosts, these viruses may be crucial for marine nutrient recycling through their influence of the biological carbon pump.

4.
Glob Chang Biol ; 30(5): e17295, 2024 May.
Article in English | MEDLINE | ID: mdl-38804108

ABSTRACT

Plant-soil biodiversity interactions are fundamental for the functioning of terrestrial ecosystems. Yet, the existence of a set of globally distributed topsoil microbial and small invertebrate organisms consistently associated with land plants (i.e., their consistent soil-borne microbiome), together with the environmental preferences and functional capabilities of these organisms, remains unknown. We conducted a standardized field survey under 150 species of land plants, including 58 species of bryophytes and 92 of vascular plants, across 124 locations from all continents. We found that, despite the immense biodiversity of soil organisms, the land plants evaluated only shared a small fraction (less than 1%) of all microbial and invertebrate taxa that were present across contrasting climatic and soil conditions and vegetation types. These consistent taxa were dominated by generalist decomposers and phagotrophs and their presence was positively correlated with the abundance of functional genes linked to mineralization. Finally, we showed that crossing environmental thresholds in aridity (aridity index of 0.65, i.e., the transition from mesic to dry ecosystems), soil pH (5.5; i.e., the transition from acidic to strongly acidic soils), and carbon (less than 2%, the lower limit of fertile soils) can result in drastic disruptions in the associations between land plants and soil organisms, with potential implications for the delivery of soil ecosystem processes under ongoing global environmental change.


Subject(s)
Embryophyta , Microbiota , Soil Microbiology , Biodiversity , Soil/chemistry
5.
Nat Rev Microbiol ; 21(10): 636, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37700056
8.
mSphere ; 8(3): e0042022, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37093039

ABSTRACT

The biological carbon pump (BCP) in the Southern Ocean is driven by phytoplankton productivity and is a significant organic matter sink. However, the role of particle-attached (PA) and free-living (FL) prokaryotes (bacteria and archaea) and their diversity in influencing the efficiency of the BCP is still unclear. To investigate this, we analyzed the metagenomes linked to suspended and sinking marine particles from the Sub-Antarctic Southern Ocean Time Series (SOTS) by deploying a Marine Snow Catcher (MSC), obtaining suspended and sinking particulate material, determining organic carbon and nitrogen flux, and constructing metagenome-assembled genomes (MAGs). The suspended and sinking particle-pools were dominated by bacteria with the potential to degrade organic carbon. Bacterial communities associated with the sinking fraction had more genes related to the degradation of complex organic carbon than those in the suspended fraction. Archaea had the potential to drive nitrogen metabolism via nitrite and ammonia oxidation, altering organic nitrogen concentration. The data revealed several pathways for chemoautotrophy and the secretion of recalcitrant dissolved organic carbon (RDOC) from CO2, with bacteria and archaea potentially sequestering particulate organic matter (POM) via the production of RDOC. These findings provide insights into the diversity and function of prokaryotes in suspended and sinking particles and their role in organic carbon/nitrogen export in the Southern Ocean. IMPORTANCE The biological carbon pump is crucial for the export of particulate organic matter in the ocean. Recent studies on marine microbes have shown the profound influence of bacteria and archaea as regulators of particulate organic matter export. Yet, despite the importance of the Southern Ocean as a carbon sink, we lack comparable insights regarding microbial contributions. This study provides the first insights regarding prokaryotic contributions to particulate organic matter export in the Southern Ocean. We reveal evidence that prokaryotic communities in suspended and sinking particle fractions harbor widespread genomic potential for mediating particulate organic matter export. The results substantially enhance our understanding of the role played by microorganisms in regulating particulate organic matter export in suspended and sinking marine fractions in the Southern Ocean.


Subject(s)
Archaea , Seawater , Archaea/genetics , Archaea/metabolism , Seawater/microbiology , Particulate Matter/metabolism , Bacteria/genetics , Bacteria/metabolism , Dissolved Organic Matter , Carbon/metabolism
9.
Nat Commun ; 14(1): 1706, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36973286

ABSTRACT

Soil contamination is one of the main threats to ecosystem health and sustainability. Yet little is known about the extent to which soil contaminants differ between urban greenspaces and natural ecosystems. Here we show that urban greenspaces and adjacent natural areas (i.e., natural/semi-natural ecosystems) shared similar levels of multiple soil contaminants (metal(loid)s, pesticides, microplastics, and antibiotic resistance genes) across the globe. We reveal that human influence explained many forms of soil contamination worldwide. Socio-economic factors were integral to explaining the occurrence of soil contaminants worldwide. We further show that increased levels of multiple soil contaminants were linked with changes in microbial traits including genes associated with environmental stress resistance, nutrient cycling, and pathogenesis. Taken together, our work demonstrates that human-driven soil contamination in nearby natural areas mirrors that in urban greenspaces globally, and highlights that soil contaminants have the potential to cause dire consequences for ecosystem sustainability and human wellbeing.


Subject(s)
Cities , Ecosystem , Internationality , Parks, Recreational , Soil Pollutants , Soil , Microbiota , Socioeconomic Factors , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis , Soil Pollutants/chemistry , Plastics
10.
Microbiol Resour Announc ; 12(3): e0109822, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36794928

ABSTRACT

Here, we present four archaeal metagenome-assembled genomes (MAGs) (three Thaumarchaeota MAGs and one Thermoplasmatota MAG) from a polar upwelling zone in the Southern Ocean. These archaea harbor putative genes encoding enzymes such as polyethylene terephthalate (PET) hydrolases (PETases) and polyhydroxybutyrate (PHB) depolymerases, which are associated with microbial degradation of PET and PHB plastics.

11.
mSystems ; 8(1): e0128222, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36744944

ABSTRACT

Viruses are the most biologically abundant entities and may be ideal indicators of fecal pollutants in water. Anthropogenic activities have triggered drastic ecosystem changes in rivers, leading to substantial shifts in chemical and biological attributes. Here, we evaluate the viability of using the presence of crAssphage as indicators of fecal contamination in South African rivers. Shotgun analysis revealed diverse crAssphage viruses in these rivers, which are impacted by chemical and biological pollution. Overall, the diversity and relative abundances of these viruses was higher in contaminated sites compared to pristine locations. In contrast to fecal coliform counts, crAssphage sequences were detected in pristine rivers, supporting the assertion that the afore mentioned marker may be a more accurate indicator of fecal contamination. Our data demonstrate the presence of diverse putative hosts which includes members of the phyla Bacteroidota, Pseudomonadota, Verrucomicrobiota, and Bacillota. Phylogenetic analysis revealed novel subfamilies, suggesting that rivers potentially harbor distinct and uncharacterized clades of crAssphage. These data provide the first insights regarding the diversity, distribution, and functional roles of crAssphage in rivers. Taken together, the results support the potential application of crAssphage as viable markers for water quality monitoring. IMPORTANCE Rivers support substantial populations and provide important ecosystem services. Despite the application of fecal coliform tests and other markers, we lack rapid and reproducible approaches for determining fecal contamination in rivers. Waterborne viral outbreaks have been reported even after fecal indicator bacteria (FIB) were suggested to be absent or below regulated levels of coliforms. This indicates a need to develop and apply improved indicators of pollutants in aquatic ecosystems. Here, we evaluate the viability of crAssphage as indicators of fecal contamination in two South African rivers. We assess the abundance, distribution, and diversity of these viruses in sites that had been predicted pristine or contaminated by FIB analysis. We show that crAssphage are ideal and sensitive markers for fecal contamination and describe novel clades of crAss-like phages. Known crAss-like subfamilies were unrepresented in our data, suggesting that the diversity of these viruses may reflect geographic locality and dependence.


Subject(s)
Rivers , Viruses , Ecosystem , Phylogeny , Environmental Monitoring , Water Pollution/analysis , Bacteria/genetics
12.
Nat Ecol Evol ; 7(1): 113-126, 2023 01.
Article in English | MEDLINE | ID: mdl-36631668

ABSTRACT

While the contribution of biodiversity to supporting multiple ecosystem functions is well established in natural ecosystems, the relationship of the above- and below-ground diversity with ecosystem multifunctionality remains virtually unknown in urban greenspaces. Here we conducted a standardized survey of urban greenspaces from 56 municipalities across six continents, aiming to investigate the relationships of plant and soil biodiversity (diversity of bacteria, fungi, protists and invertebrates, and metagenomics-based functional diversity) with 18 surrogates of ecosystem functions from nine ecosystem services. We found that soil biodiversity across biomes was significantly and positively correlated with multiple dimensions of ecosystem functions, and contributed to key ecosystem services such as microbially driven carbon pools, organic matter decomposition, plant productivity, nutrient cycling, water regulation, plant-soil mutualism, plant pathogen control and antibiotic resistance regulation. Plant diversity only indirectly influenced multifunctionality in urban greenspaces via changes in soil conditions that were associated with soil biodiversity. These findings were maintained after controlling for climate, spatial context, soil properties, vegetation and management practices. This study provides solid evidence that conserving soil biodiversity in urban greenspaces is key to supporting multiple dimensions of ecosystem functioning, which is critical for the sustainability of urban ecosystems and human wellbeing.


Subject(s)
Ecosystem , Soil , Humans , Parks, Recreational , Biodiversity , Plants
13.
Microbiome ; 10(1): 219, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36503688

ABSTRACT

BACKGROUND: Little is known about the global distribution and environmental drivers of key microbial functional traits such as antibiotic resistance genes (ARGs). Soils are one of Earth's largest reservoirs of ARGs, which are integral for soil microbial competition, and have potential implications for plant and human health. Yet, their diversity and global patterns remain poorly described. Here, we analyzed 285 ARGs in soils from 1012 sites across all continents and created the first global atlas with the distributions of topsoil ARGs. RESULTS: We show that ARGs peaked in high latitude cold and boreal forests. Climatic seasonality and mobile genetic elements, associated with the transmission of antibiotic resistance, were also key drivers of their global distribution. Dominant ARGs were mainly related to multidrug resistance genes and efflux pump machineries. We further pinpointed the global hotspots of the diversity and proportions of soil ARGs. CONCLUSIONS: Together, our work provides the foundation for a better understanding of the ecology and global distribution of the environmental soil antibiotic resistome. Video Abstract.


Subject(s)
Anti-Bacterial Agents , Soil , Humans , Anti-Bacterial Agents/pharmacology , Ecology , Phenotype
14.
Nature ; 610(7933): 693-698, 2022 10.
Article in English | MEDLINE | ID: mdl-36224389

ABSTRACT

Soils are the foundation of all terrestrial ecosystems1. However, unlike for plants and animals, a global assessment of hotspots for soil nature conservation is still lacking2. This hampers our ability to establish nature conservation priorities for the multiple dimensions that support the soil system: from soil biodiversity to ecosystem services. Here, to identify global hotspots for soil nature conservation, we performed a global field survey that includes observations of biodiversity (archaea, bacteria, fungi, protists and invertebrates) and functions (critical for six ecosystem services) in 615 composite samples of topsoil from a standardized survey in all continents. We found that each of the different ecological dimensions of soils-that is, species richness (alpha diversity, measured as amplicon sequence variants), community dissimilarity and ecosystem services-peaked in contrasting regions of the planet, and were associated with different environmental factors. Temperate ecosystems showed the highest species richness, whereas community dissimilarity peaked in the tropics, and colder high-latitudinal ecosystems were identified as hotspots of ecosystem services. These findings highlight the complexities that are involved in simultaneously protecting multiple ecological dimensions of soil. We further show that most of these hotspots are not adequately covered by protected areas (more than 70%), and are vulnerable in the context of several scenarios of global change. Our global estimation of priorities for soil nature conservation highlights the importance of accounting for the multidimensionality of soil biodiversity and ecosystem services to conserve soils for future generations.


Subject(s)
Biodiversity , Conservation of Natural Resources , Geographic Mapping , Soil Microbiology , Soil , Animals , Conservation of Natural Resources/methods , Soil/parasitology , Invertebrates , Archaea
15.
FEMS Microbiol Ecol ; 98(11)2022 10 26.
Article in English | MEDLINE | ID: mdl-36255374

ABSTRACT

The Southern Ocean (SO) distributes climate signals and nutrients worldwide, playing a pivotal role in global carbon sequestration. Microbial communities are essential mediators of primary productivity and carbon sequestration, yet we lack a comprehensive understanding of microbial diversity and functionality in the SO. Here, we examine contemporary studies in this unique polar system, focusing on prokaryotic communities and their relationships with other trophic levels (i.e. phytoplankton and viruses). Strong seasonal variations and the characteristic features of this ocean are directly linked to community composition and ecosystem functions. Specifically, we discuss characteristics of SO microbial communities and emphasise differences from the Arctic Ocean microbiome. We highlight the importance of abundant bacteria in recycling photosynthetically derived organic matter. These heterotrophs appear to control carbon flux to higher trophic levels when light and iron availability favour primary production in spring and summer. Conversely, during winter, evidence suggests that chemolithoautotrophs contribute to prokaryotic production in Antarctic waters. We conclude by reviewing the effects of climate change on marine microbiota in the SO.


Subject(s)
Ecosystem , Microbiota , Seawater/microbiology , Phytoplankton , Carbon Cycle , Oceans and Seas
17.
Microbiol Resour Announc ; 11(9): e0049622, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35938833

ABSTRACT

We present four Lentisphaerae metagenome-assembled genomes (MAGs) from the South Atlantic Ocean. The medium-quality genomes, affiliated with the family of Lentisphaeraceae, ranged from 4.86 to 5.46 Mbp and harbored the genetic capacity to produce secondary metabolites. This resource provides a basis for investigating the functional attributes of this phylum.

18.
Commun Biol ; 4(1): 1302, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34795375

ABSTRACT

Microbial biosynthetic gene clusters (BGCs) encoding secondary metabolites are thought to impact a plethora of biologically mediated environmental processes, yet their discovery and functional characterization in natural microbiomes remains challenging. Here we describe deep long-read sequencing and assembly of metagenomes from biological soil crusts, a group of soil communities that are rich in BGCs. Taking advantage of the unusually long assemblies produced by this approach, we recovered nearly 3,000 BGCs for analysis, including 712 full-length BGCs. Functional exploration through metatranscriptome analysis of a 3-day wetting experiment uncovered phylum-specific BGC expression upon activation from dormancy, elucidating distinct roles and complex phylogenetic and temporal dynamics in wetting processes. For example, a pronounced increase in BGC transcription occurs at night primarily in cyanobacteria, implicating BGCs in nutrient scavenging roles and niche competition. Taken together, our results demonstrate that long-read metagenomic sequencing combined with metatranscriptomic analysis provides a direct view into the functional dynamics of BGCs in environmental processes and suggests a central role of secondary metabolites in maintaining phylogenetically conserved niches within biocrusts.


Subject(s)
Bacteria/metabolism , Metagenome , Microbiota/genetics , Secondary Metabolism , Soil Microbiology , Bacteria/genetics , Metagenomics , Multigene Family , Utah
19.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34732568

ABSTRACT

Numerous diverse microorganisms reside in the cold desert soils of continental Antarctica, though we lack a holistic understanding of the metabolic processes that sustain them. Here, we profile the composition, capabilities, and activities of the microbial communities in 16 physicochemically diverse mountainous and glacial soils. We assembled 451 metagenome-assembled genomes from 18 microbial phyla and inferred through Bayesian divergence analysis that the dominant lineages present are likely native to Antarctica. In support of earlier findings, metagenomic analysis revealed that the most abundant and prevalent microorganisms are metabolically versatile aerobes that use atmospheric hydrogen to support aerobic respiration and sometimes carbon fixation. Surprisingly, however, hydrogen oxidation in this region was catalyzed primarily by a phylogenetically and structurally distinct enzyme, the group 1l [NiFe]-hydrogenase, encoded by nine bacterial phyla. Through gas chromatography, we provide evidence that both Antarctic soil communities and an axenic Bacteroidota isolate (Hymenobacter roseosalivarius) oxidize atmospheric hydrogen using this enzyme. Based on ex situ rates at environmentally representative temperatures, hydrogen oxidation is theoretically sufficient for soil communities to meet energy requirements and, through metabolic water production, sustain hydration. Diverse carbon monoxide oxidizers and abundant methanotrophs were also active in the soils. We also recovered genomes of microorganisms capable of oxidizing edaphic inorganic nitrogen, sulfur, and iron compounds and harvesting solar energy via microbial rhodopsins and conventional photosystems. Obligately symbiotic bacteria, including Patescibacteria, Chlamydiae, and predatory Bdellovibrionota, were also present. We conclude that microbial diversity in Antarctic soils reflects the coexistence of metabolically flexible mixotrophs with metabolically constrained specialists.


Subject(s)
Desert Climate , Gases/metabolism , Ice Cover/microbiology , Microbiota , Soil Microbiology , Antarctic Regions , Autotrophic Processes , Biodiversity , Hydrogenase/metabolism , Metagenome , Oxidation-Reduction , Phototrophic Processes
20.
Microbiol Resour Announc ; 10(39): e0075921, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34591681

ABSTRACT

SAR324 is a ubiquitous and phylogenetically distinct clade of Deltaproteobacteria in marine environments. Here, we present three single-cell amplified genome sequences from the SAR324 lineage, obtained from the abyssopelagic zone of the Indian sector of the Southern Ocean.

SELECTION OF CITATIONS
SEARCH DETAIL
...