Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Dev Technol ; 21(1): 76-85, 2016.
Article in English | MEDLINE | ID: mdl-25329444

ABSTRACT

The usefulness of Docetaxel (DT) as an anti-cancer agent is limited to parenteral route owing to its very poor oral bioavailability. Thus, to improve its oral efficacy, DT was loaded in novel cationic lipid nanocapsules (DT CLNC). The DT CLNC possessed size of 130-150 nm, zeta potential of +72mV, adequate DT loading and over 95% encapsulation efficiency. TEM revealed capsular structure of DT CLNC. Lipolysis study indicated improved solubilization of DT by nanocapsules in comparison to DT solution. DT CLNC exhibited significantly higher release of DT in comparison to DT solution during in vitro permeation studies employing non-reverted rat-intestinal sac. Superior uptake of DT in zebra fishes exposed to DT CLNC resulted in greater apoptosis-based cell death as compared to those exposed to DT solution. This correlated well with the significantly superior (p < 0.05) anti-angiogenic activity of DT CLNC system over DT solution, in zebra fish model. DT CLNC also inhibited tumor growth in melanoma cell line induced tumors in C57BL/6 mice significantly, as compared to DT solution (p < 0.05). The DT CLNC system demonstrated adequate stability, with tremendous potential to improve oral efficacy of DT and can serve as an alternative to existing DT formulations available commercially for parenteral use.


Subject(s)
Lipids/chemistry , Lipids/pharmacokinetics , Nanocapsules/chemistry , Taxoids/chemistry , Taxoids/pharmacokinetics , Animals , Cations , Docetaxel , Female , Lipids/administration & dosage , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Nanocapsules/administration & dosage , Particle Size , Rats , Taxoids/administration & dosage , Zebrafish
2.
Int J Pharm ; 490(1-2): 391-403, 2015 Jul 25.
Article in English | MEDLINE | ID: mdl-26002568

ABSTRACT

The present study compares three vesicular systems, cationic LeciPlex, invasomes, and conventional liposomes for their ability to deliver drugs deep into the skin. Skin penetration ability of the three vesicular systems was studied for two drugs namely idebenone (antioxidant/anticancer) and azelaic acid (antiacne). All systems showed sizes in nanometer range with small polydispersity indices. Vesicular systems were characterized by CryoTEM studies to understand the differences in morphology of the vesicular systems. Ex vivo human skin penetration studies suggested a pattern in penetration of drugs in different layers of the skin: LeciPlex showed higher penetration for idebenone whereas invasomes showed higher penetration of azelaic acid. Ex vivo study using a fluorescent dye (DiI) was performed to understand the differences in the penetration behavior of the three vesicular systems on excised human skin. In vitro cytotoxicity studies on B16F10 melanoma cell lines revealed, when loaded with idebenone, LeciPlex formulations had the superior activity followed by invasomes and liposomes. In vitro antimicrobial study of azelaic acid loaded systems on Propionibacterium acne revealed high antimicrobial activity for DDAB leciplex followed by almost equal activity for invasomes and CTAB LeciPlex followed by liposomes. Whereas antiacne efficacy study in rats for azelaic acid loaded systems, invasomes exhibited the best antiacne efficacy followed by liposomes and LeciPlex.


Subject(s)
Anti-Infective Agents/administration & dosage , Anti-Infective Agents/chemistry , Dermatologic Agents/administration & dosage , Dermatologic Agents/chemistry , Liposomes/chemistry , Skin/metabolism , Animals , Cell Line, Tumor , Chemistry, Pharmaceutical/methods , Dicarboxylic Acids/administration & dosage , Dicarboxylic Acids/chemistry , Drug Delivery Systems/methods , Female , Humans , Liposomes/administration & dosage , Melanoma, Experimental , Propionibacterium acnes/drug effects , Rats , Rats, Wistar , Skin Absorption , Ubiquinone/administration & dosage , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry
3.
J Ayurveda Integr Med ; 5(2): 89-96, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24948859

ABSTRACT

BACKGROUND: Ficus carica Linn. is reported to possess variety of activities, but its potential in CNS disorders is still to be explored. OBJECTIVE: The present study was carried out to evaluate the CNS depressant activity of aqueous acetonic extract of Ficus carica Linn on different models in mice. MATERIALS AND METHODS: The aerial parts of the plant Ficus carica L. were extracted with aqueous acetone and the solvent was removed by rotary vacuum evaporator under reduced pressure. A crude extract was given orally and its effects were tested on ketamine-induced sleeping time, muscle-coordination, anxiety (elevated-plus maze and Staircase test), convulsions [maximal electroshock (MES) and pentylenetetrazole (PTZ)-induced seizures], and nociception. In addition, we determined the levels of neurotransmitters, norepinephrine (NE) and 5-hydroxytryptamine (5-HT). RESULTS: RESULTS FROM THE EXPERIMENTAL MODELS TESTED SHOWED: (1) a delay on onset and prolongation of sleep of ketamine-induced sleeping time; (2) significant muscle relaxant activity; (3) a significant attenuation in the anxiety-response (4) a delay in the onset of seizures and reduction in duration of seizures and mortality induced by MES and PTZ; (5) a reduction in the licking time in nociception test and (6) increased levels of NE and 5-HT. CONCLUSION: This suggests that Ficus carica L. exerts its CNS depressive effect by modulating the neurotransmitters NE and 5-HT in the brain.

4.
J Pharmacol Pharmacother ; 5(1): 39-46, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24554909

ABSTRACT

OBJECTIVE: To determine the utility of zebra fish as an animal model for Parkinson's disease (PD) in comparison with rat model. MATERIALS AND METHODS: MTT assay was performed on rat and zebrafish brain synaptosomal fractions using rotenone as a neurotoxic agent. Quercetin and resveratrol were used as standards to compare anti-apoptotic activity in both organisms. Catalepsy was induced in zebrafish by exposing them to haloperidol (9 µM) solution. Drug-treated groups were exposed to bromocriptine and pramipexole, 30 min prior to haloperidol exposure at the dose of 2, 5, and 10 µg/mL. Swimming speed, time spent in the bottom of the tank, and complete cataleptic time were evaluated to assess behavioral changes. In rats, catalepsy was induced using haloperidol (1.25 mg/kg i.p.). Drug-treated groups received bromocriptine (2.5 mg/kg.) and pramipexole (1 mg/kg) orally. Bar test, block test, and locomotor activity were carried out to assess behavioral changes. RESULTS: Resveratrol and quercetin showed comparable inhibition of apoptosis in rats and zebrafish. In anti-cataleptic study, bromocriptine and pramipexole-treated groups showed significant difference (P < 0.05) in behavioral parameters as compared to haloperidol control group in both the experimental organisms. Results obtained from fish model were in correlation with rat model. CONCLUSION: Findings of the present study revealed that zebrafish model is highly sensitive and can be used for basic screening of drugs against PD.

SELECTION OF CITATIONS
SEARCH DETAIL
...