Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 16872, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39043900

ABSTRACT

Sphingomyelin (SM) is a major sphingolipid in mammalian cells. SM is enriched in the extracellular leaflet of the plasma membrane (PM). Besides this localization, recent electron microscopic and biochemical studies suggest the presence of SM in the cytosolic leaflet of the PM. In the present study, we generated a non-toxic SM-binding variant (NT-EqtII) based on equinatoxin-II (EqtII) from the sea anemone Actinia equina, and examined the dynamics of SM in the cytosolic leaflet of living cell PMs. NT-EqtII with two point mutations (Leu26Ala and Pro81Ala) had essentially the same specificity and affinity to SM as wild-type EqtII. NT-EqtII expressed in the cytosol was recruited to the PM in various cell lines. Super-resolution microscopic observation revealed that NT-EqtII formed tiny domains that were significantly colocalized with cholesterol and N-terminal Lyn. Meanwhile, single molecule observation at high resolutions down to 1 ms revealed that all the examined lipid probes including NT-EqtII underwent apparent fast simple Brownian diffusion, exhibiting that SM and other lipids in the cytosolic leaflet rapidly moved in and out of domains. Thus, the novel SM-binding probe demonstrated the presence of the raft-like domain in the cytosolic leaflet of living cell PMs.


Subject(s)
Cell Membrane , Cnidarian Venoms , Cytosol , Sphingomyelins , Sphingomyelins/metabolism , Cell Membrane/metabolism , Cytosol/metabolism , Animals , Cnidarian Venoms/metabolism , Cnidarian Venoms/genetics , Humans , Sea Anemones/metabolism , Sea Anemones/genetics , Cholesterol/metabolism
2.
Sci Rep ; 14(1): 11442, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769440

ABSTRACT

The global supply of fluoropolymers and fluorinated solvents is decreasing due to environmental concerns regarding polyfluoroalkyl substances. CYTOP has been used for decades primarily as a component of a femtoliter chamber array for digital bioanalysis; however, its supply has recently become scarce, increasing the urgency of fabricating a femtoliter chamber array using alternative materials. In this study, we investigated the feasibility of fabricating a femtoliter chamber array using four types of fluoropolymers in stable supply as candidate substitutes and verified their applicability for digital bioanalysis. Among these candidates, Fluorine Sealant emerged as a viable option for fabricating femtoliter chamber arrays using a conventional photolithography process. To validate its efficacy, we performed various digital bioanalysis using FP-A-based chamber arrays with model enzymes such as CRISPR-Cas, horseradish peroxidase, and ß-galactosidase. The results demonstrated the similar performance to that of CYTOP, highlighting the broader utility of FP-A in digital bioanalysis. Our findings underscore the potential of FP-A to enhance the versatility of digital bioanalysis and foster the ongoing advancement of innovative diagnostic technologies.


Subject(s)
Polymers , Polymers/chemistry , Horseradish Peroxidase/metabolism , Horseradish Peroxidase/chemistry , beta-Galactosidase/metabolism
3.
Anal Chem ; 95(25): 9680-9686, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37306305

ABSTRACT

Genetic tests are highly sensitive, and quantitative methods for diagnosing human viral infections, including COVID-19, are also being used to diagnose plant diseases in various agricultural settings. Conventional genetic tests for plant viruses are mostly based on methods that require purification and amplification of viral genomes from plant samples, which generally take several hours in total, making it difficult to use them in rapid detection at point-of-care testing (POCT). In this study, we developed Direct-SATORI, a rapid and robust genetic test that eliminates the purification and amplification processes of viral genomes by extending the recently developed amplification-free digital RNA detection platform called SATORI, allowing the detection of various plant viral genes in a total of less than 15 min with a limit of detection (LoD) of 98 ∼ copies/µL using tomato viruses as an example. In addition, the platform can simultaneously detect eight plant viruses directly from ∼1 mg of tomato leaves with a sensitivity of 96% and a specificity of 99%. Direct-SATORI can be applied to various infections related to RNA viruses, and its practical use is highly anticipated as a versatile platform for plant disease diagnostics in the future.


Subject(s)
COVID-19 , Plant Viruses , Humans , RNA , Plant Viruses/genetics , Limit of Detection , RNA, Viral/genetics , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods , COVID-19 Testing
4.
Cell Mol Life Sci ; 80(6): 167, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37249637

ABSTRACT

Monosialoganglioside GM3 is the simplest ganglioside involved in various cellular signaling. Cell surface distribution of GM3 is thought to be crucial for the function of GM3, but little is known about the cell surface GM3 distribution. It was shown that anti-GM3 monoclonal antibody binds to GM3 in sparse but not in confluent melanoma cells. Our model membrane study evidenced that monoclonal anti-GM3 antibodies showed stronger binding when GM3 was in less fluid membrane environment. Studies using fluorescent GM3 analogs suggested that GM3 was clustered in less fluid membrane. Moreover, fluorescent lifetime measurement showed that cell surface of high density melanoma cells is more fluid than that of low density cells. Lipidomics and fatty acid supplementation experiment suggested that monounsaturated fatty acid-containing phosphatidylcholine contributed to the cell density-dependent membrane fluidity. Our results indicate that anti-GM3 antibody senses GM3 clustering and the number and/or size of GM3 cluster differ between sparse and confluent melanoma cells.


Subject(s)
G(M3) Ganglioside , Melanoma , Humans , G(M3) Ganglioside/metabolism , Cell Membrane/metabolism , Antibodies, Monoclonal , Melanoma/metabolism , Cell Count
5.
Lab Chip ; 23(4): 684-691, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36255223

ABSTRACT

The femtoliter-chamber array is a bioanalytical platform that enables highly sensitive and quantitative analysis of biological reactions at the single-molecule level. This feature has been considered a key technology for "digital bioanalysis" in the biomedical field; however, its versatility is limited by the need for a large and expensive setup such as a fluorescence microscope, which requires a long time to acquire the entire image of a femtoliter-chamber array. To address these issues, we developed a compact and inexpensive wide-field imaging system (COWFISH) that can acquire fluorescence images with a large field of view (11.8 mm × 7.9 mm) and a high spatial resolution of ∼ 3 µm, enabling high-speed analysis of sub-million femtoliter chambers in 20 s. Using COWFISH, we demonstrated a CRISPR-Cas13a-based digital detection of viral RNA of SARS-CoV-2 with an equivalent detection sensitivity (limit of detection: 480 aM) and a 10-fold reduction in total imaging time, as compared to confocal fluorescence microscopy. In addition, we demonstrated the feasibility of COWFISH to discriminate between SARS-CoV-2-positive and -negative clinical specimens with 95% accuracy, showing its application in COVID-19 diagnosis. Therefore, COWFISH can serve as a compact and inexpensive imaging system for high-speed and accurate digital bioanalysis, paving a way for various biomedical applications, such as diagnosis of viral infections.


Subject(s)
COVID-19 Testing , COVID-19 , Humans , SARS-CoV-2 , Microscopy, Fluorescence , Microscopy, Confocal
6.
Sci Rep ; 12(1): 20803, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36460753

ABSTRACT

Little is known about the molecular mechanisms of ceramide-mediated cellular signaling. We examined the effects of palmitoyl ceramide (C16-ceramide) and stearoyl ceramide (C18-ceramide) on the phase behavior of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) using differential scanning calorimetry (DSC) and small- and wide-angle X-ray scattering (SAXS, WAXS). As previously published, the presence of ceramides increased the lamellar gel-to-lamellar liquid crystalline (Lß-Lα) phase transition temperature of POPC and POPE and decreased the Lα-to-inverted hexagonal (Lα-HII) phase transition temperature of POPE. Interestingly, despite an ~ 30° difference in the main phase transition temperatures of POPC and POPE, the Lß-Lα phase transition temperatures were very close between POPC/C18-ceramide and POPE/C18-ceramide and were near physiological temperature. A comparison of the results of C16-ceramide in published and our own results with those of C18-ceramide indicates that increase of the carbon chain length of ceramide from 16 to 18 and/or the small difference of ceramide content in the membrane dramatically change the phase transition temperature of POPC and POPE to near physiological temperature. Our results support the idea that ceramide signaling is mediated by the alteration of lipid phase-dependent partitioning of signaling proteins.


Subject(s)
Ceramides , Phospholipids , Temperature , Scattering, Small Angle , X-Ray Diffraction , Phosphorylcholine
7.
Commun Biol ; 5(1): 473, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35614128

ABSTRACT

In the ongoing COVID-19 pandemic, rapid and sensitive diagnosis of viral infection is a critical deterrent to the spread of SARS-CoV-2. To this end, we developed an automated amplification-free digital RNA detection platform using CRISPR-Cas13a and microchamber device (opn-SATORI), which automatically completes a detection process from sample mixing to RNA quantification in clinical specimens within ~9 min. Using the optimal Cas13a enzyme and magnetic beads technology, opn-SATORI detected SARS-CoV-2 genomic RNA with a LoD of < 6.5 aM (3.9 copies µL-1), comparable to RT-qPCR. Additionally, opn-SATORI discriminated between SARS-CoV-2 variants of concern, including alpha, delta, and omicron, with 98% accuracy. Thus, opn-SATORI can serve as a rapid and convenient diagnostic platform for identifying several types of viral infections.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Pandemics , RNA, Viral/genetics , SARS-CoV-2/genetics
8.
Cell Rep ; 37(6): 109935, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34758297

ABSTRACT

Sphingomyelin (SM) is a mammalian lipid mainly distributed in the outer leaflet of the plasma membrane (PM). We show that peripheral myelin protein 2 (PMP2), a member of the fatty-acid-binding protein (FABP) family, can localize at the PM and controls the transbilayer distribution of SM. Genetic screening with genome-wide small hairpin RNA libraries identifies PMP2 as a protein involved in the transbilayer movement of SM. A biochemical assay demonstrates that PMP2 is a phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-binding protein. PMP2 induces the tubulation of model membranes in a PI(4,5)P2-dependent manner, accompanied by the modification of the transbilayer membrane distribution of lipids. In the PM of PMP2-overexpressing cells, inner-leaflet SM is increased whereas outer-leaflet SM is reduced. PMP2 is a causative protein of Charcot-Marie-Tooth disease (CMT). A mutation in PMP2 associated with CMT increases its affinity for PI(4,5)P2, inducing membrane tubulation and the subsequent transbilayer movement of lipids.


Subject(s)
Cell Membrane/metabolism , Charcot-Marie-Tooth Disease/metabolism , Myelin P2 Protein/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Sphingomyelins/metabolism , Animals , Biological Transport , Cell Membrane/genetics , Charcot-Marie-Tooth Disease/genetics , Dogs , HeLa Cells , Humans , Madin Darby Canine Kidney Cells , Mutation , Myelin P2 Protein/genetics
9.
Skin Pharmacol Physiol ; 34(5): 246-252, 2021.
Article in Chinese | MEDLINE | ID: mdl-33915532

ABSTRACT

Sphingomyelin (SM) is a constituent of cellular membranes, while ceramides (Cer) produced from SM on plasma membranes serve as a lipid mediator that regulates cell proliferation, differentiation, and apoptosis. In the skin, SM also is a precursor of Cer, an important constituent of epidermal permeability barrier. We investigated the role of epidermal SM synthase (SMS)2, an isoform of SMS, which modulates SM and Cer levels on plasma membranes. Although SMS2-knockout (SMS2-KO) mice were not neonatal lethal, an ichthyotic phenotype with epidermal hyperplasia and hyperkeratosis was evident at birth, which persisted until 2 weeks of age. These mice showed abnormal lamellar body morphology and secretion, and abnormal extracellular lamellar membranes in the stratum corneum. These abnormalities were no longer evident by 4 weeks of age in SMS2-KO mice. Our study suggests that (1) exposure to a dry terrestrial environment initiates compensatory responses, thereby normalizing epidermal ichthyotic abnormalities and (2) that a nonlethal gene abnormality can cause an ichthyotic skin phenotype.


Subject(s)
Lamellar Bodies , Transferases (Other Substituted Phosphate Groups) , Animals , Epidermis , Mice , Mice, Knockout , Transferases (Other Substituted Phosphate Groups)/deficiency , Transferases (Other Substituted Phosphate Groups)/genetics
10.
Commun Biol ; 4(1): 476, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33875803

ABSTRACT

CRISPR-based nucleic-acid detection is an emerging technology for molecular diagnostics. However, these methods generally require several hours and could cause amplification errors, due to the pre-amplification of target nucleic acids to enhance the detection sensitivity. Here, we developed a platform that allows "CRISPR-based amplification-free digital RNA detection (SATORI)", by combining CRISPR-Cas13-based RNA detection and microchamber-array technologies. SATORI detected single-stranded RNA targets with maximal sensitivity of ~10 fM in <5 min, with high specificity. Furthermore, the simultaneous use of multiple different guide RNAs enhanced the sensitivity, thereby enabling the detection of the SARS-CoV-2 N-gene RNA at ~5 fM levels. Therefore, we hope SATORI will serve as a powerful class of accurate and rapid diagnostics.


Subject(s)
COVID-19/diagnosis , CRISPR-Cas Systems , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics , RNA/genetics , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing/methods , Humans , RNA/metabolism , RNA, Viral/metabolism , Reproducibility of Results , SARS-CoV-2/physiology , Sensitivity and Specificity
11.
Contact (Thousand Oaks) ; 4: 25152564211042456, 2021.
Article in English | MEDLINE | ID: mdl-37366372

ABSTRACT

Sphingomyelin (SM) is a major sphingolipid in mammalian cells. Although SM is enriched in the outer leaflet of the cell plasma membrane, lipids are also observed in the inner leaflet of the plasma membrane and intracellular organelles such as endolysosomes, the Golgi apparatus and nuclei. SM is postulated to form clusters with glycosphingolipids (GSLs), cholesterol (Chol), and other SM molecules through hydrophobic interactions and hydrogen bonding. Thus, different clusters composed of SM, SM/Chol, SM/GSL and SM/GSL/Chol with different stoichiometries may exist in biomembranes. In addition, SM monomers may be located in the glycerophospholipid-rich areas of membranes. Recently developed SM-binding proteins (SBPs) distinguish these different SM assemblies. Here, we summarize the effects of intrinsic factors regulating the lipid-binding specificity of SBPs and extrinsic factors, such as the lipid phase and lipid density, on SM recognition by SBPs. The combination of different SBPs revealed the heterogeneity of SM domains in biomembranes.

12.
Sci Rep ; 7(1): 2900, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28588242

ABSTRACT

We have developed and characterized a novel photoswitchable phospholipid analog termed N-nitroBIPS-DPPG. The fluorescence can be switched on and off repeatedly with minimal photobleaching by UV or visible light exposure, respectively. The rather large photochromic head group is inserted deeply into the interfacial membrane region conferring a conical overall lipid shape, preference for a positive curvature and only minimal intermembrane transfer. Utilizing the switchable NBD fluorescence quenching ability of N-nitroBIPS-DPPG, a detergent free intermembrane transfer assay system for NBD modified lipids was demonstrated and validated. As NBD quenching can be turned off, total NBD associated sample fluorescence can be determined without the need of detergents. This not only reduces detergent associated systematic errors, but also simplifies assay handling and allows assay extension to detergent insoluble lipid species.

13.
J Cell Biol ; 216(4): 1183-1204, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28330937

ABSTRACT

Sphingomyelin (SM) has been proposed to form cholesterol-dependent raft domains and sphingolipid domains in the plasma membrane (PM). How SM contributes to the formation and function of these domains remains unknown, primarily because of the scarcity of suitable fluorescent SM analogs. We developed new fluorescent SM analogs by conjugating a hydrophilic fluorophore to the SM choline headgroup without eliminating its positive charge, via a hydrophilic nonaethylene glycol linker. The new analogs behaved similarly to the native SM in terms of their partitioning behaviors in artificial liquid order-disorder phase-separated membranes and detergent-resistant PM preparations. Single fluorescent molecule tracking in the live-cell PM revealed that they indirectly interact with each other in cholesterol- and sphingosine backbone-dependent manners, and that, for ∼10-50 ms, they undergo transient colocalization-codiffusion with a glycosylphosphatidylinositol (GPI)-anchored protein, CD59 (in monomers, transient-dimer rafts, and clusters), in CD59-oligomer size-, cholesterol-, and GPI anchoring-dependent manners. These results suggest that SM continually and rapidly exchanges between CD59-associated raft domains and the bulk PM.


Subject(s)
Fluorescent Dyes/metabolism , Sphingomyelins/metabolism , Animals , CD59 Antigens/metabolism , CHO Cells , Cell Line , Cell Membrane/metabolism , Cholesterol/metabolism , Cricetulus , Detergents/metabolism , Glycosylphosphatidylinositols/metabolism , Hydrophobic and Hydrophilic Interactions , Membrane Microdomains/metabolism , Sphingolipids/metabolism , Swine
14.
FASEB J ; 31(4): 1301-1322, 2017 04.
Article in English | MEDLINE | ID: mdl-27492925

ABSTRACT

We identified a novel, nontoxic mushroom protein that specifically binds to a complex of sphingomyelin (SM), a major sphingolipid in mammalian cells, and cholesterol (Chol). The purified protein, termed nakanori, labeled cell surface domains in an SM- and Chol-dependent manner and decorated specific lipid domains that colocalized with inner leaflet small GTPase H-Ras, but not K-Ras. The use of nakanori as a lipid-domain-specific probe revealed altered distribution and dynamics of SM/Chol on the cell surface of Niemann-Pick type C fibroblasts, possibly explaining some of the disease phenotype. In addition, that nakanori treatment of epithelial cells after influenza virus infection potently inhibited virus release demonstrates the therapeutic value of targeting specific lipid domains for anti-viral treatment.-Makino, A., Abe, M., Ishitsuka, R., Murate, M., Kishimoto, T., Sakai, S., Hullin-Matsuda, F., Shimada, Y., Inaba, T., Miyatake, H., Tanaka, H., Kurahashi, A., Pack, C.-G., Kasai, R. S., Kubo, S., Schieber, N. L., Dohmae, N., Tochio, N., Hagiwara, K., Sasaki, Y., Aida, Y., Fujimori, F., Kigawa, T., Nishibori, K., Parton, R. G., Kusumi, A., Sako, Y., Anderluh, G., Yamashita, M., Kobayashi, T., Greimel, P., Kobayashi, T. A novel sphingomyelin/cholesterol domain-specific probe reveals the dynamics of the membrane domains during virus release and in Niemann-Pick type C.


Subject(s)
Cholesterol/metabolism , Fungal Proteins/pharmacology , Grifola/chemistry , Membrane Microdomains/drug effects , Niemann-Pick Disease, Type C/metabolism , Sphingomyelins/metabolism , Binding Sites , Cells, Cultured , Fibroblasts/drug effects , Fibroblasts/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , HeLa Cells , Humans , Membrane Microdomains/metabolism , Membrane Microdomains/virology , Protein Binding , Virus Release
15.
Biochimie ; 130: 81-90, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27693589

ABSTRACT

In this mini-review, we summarize current knowledge about the lipid-binding characteristics of two types of toxins used to visualize the membrane distribution of phosphoethanolamine-containing lipid species: the glycerophospholipid, phosphatidylethanolamine (PE) and the sphingolipid, ceramide phosphoethanolamine (CPE). The lantibiotic cinnamycin and the structurally-related peptide duramycin produced by some Gram-positive bacteria were among the first toxins characterized by their specificity for PE which is widely present in animal kingdoms from bacteria to mammals. These toxins promoted their binding to PE-containing membranes by changing membrane curvature and by inducing transbilayer lipid movement. The recognition of the conical shape and negative curvature adopted by the PE species within the membrane, is important to understand how lipid-peptide interaction can occur. Three mushroom-derived proteins belonging to the aegerolysin family, pleurotolysin A2, ostreolysin and erylysin A were recently described as efficient tools to visualize the membrane distribution of CPE which is found in trace amounts in mammalian cells but in higher amounts in some developmental stages of lower eukaryotes like Trypanosoma and in invertebrates such as Drosophila. The recent development of lantibiotic-based PE-specific and aegerolysin-based CPE-specific probes is useful to visualize and specify the role of these lipids in various pathophysiological events such as cell division, apoptosis, tumor vasculature and parasite developmental stages.


Subject(s)
Bacteriocins/metabolism , Ethanolamines/metabolism , Fungal Proteins/metabolism , Hemolysin Proteins/metabolism , Peptides, Cyclic/metabolism , Peptides/metabolism , Phosphatidylethanolamines/metabolism , Animals , Bacteriocins/chemistry , Bacteriocins/pharmacology , Binding, Competitive/drug effects , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Ethanolamines/chemistry , Fungal Proteins/chemistry , Fungal Proteins/pharmacology , Hemolysin Proteins/chemistry , Hemolysin Proteins/pharmacology , Peptides/chemistry , Peptides/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Phosphatidylethanolamines/chemistry , Protein Binding/drug effects
16.
Mol Biol Cell ; 27(21): 3293-3304, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27582390

ABSTRACT

Dysregulated hepatic cholesterol homeostasis with free cholesterol accumulation in the liver is relevant to the pathogenesis of nonalcoholic steatohepatitis, contributing to the chronicity of liver toxicity. Here we examined the effect of free cholesterol accumulation on the morphology and biochemical properties of lipid droplets (LDs) in cultured hepatocytes. Acute free cholesterol accumulation induced the fusion of LDs, followed by degradation of the coat protein of LDs, perilipin 2 (PLIN2; also called adipophilin or adipose differentiation-related protein), and association of apolipoprotein B 100 (ApoB 100) to LDs. The degradation of PLIN2 was inhibited by inhibitors of ubiquitination, autophagy, and protein synthesis. The results indicate that association of ApoB 100 with LDs is dependent on the activity of low-molecular weight GTP-binding protein Rab18 and highlight the role of LDs as targets of free cholesterol toxicity in hepatocytes.


Subject(s)
Cholesterol/metabolism , Lipid Droplets/metabolism , Lipid Droplets/physiology , Apolipoprotein B-100/metabolism , Apolipoprotein B-100/physiology , Carrier Proteins/metabolism , Cell Culture Techniques , Cholesterol/physiology , Endoplasmic Reticulum/pathology , Hepatocytes/metabolism , Humans , Lipid Metabolism , Lipids/chemistry , Liver/metabolism , Membrane Proteins/metabolism , Perilipin-2/metabolism , Phosphoproteins/metabolism , rab GTP-Binding Proteins
17.
Proc Natl Acad Sci U S A ; 113(28): 7834-9, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27342861

ABSTRACT

Lipid membrane curvature plays important roles in various physiological phenomena. Curvature-regulated dynamic membrane remodeling is achieved by the interaction between lipids and proteins. So far, several membrane sensing/sculpting proteins, such as Bin/amphiphysin/Rvs (BAR) proteins, are reported, but there remains the possibility of the existence of unidentified membrane-deforming proteins that have not been uncovered by sequence homology. To identify new lipid membrane deformation proteins, we applied liposome-based microscopic screening, using unbiased-darkfield microscopy. Using this method, we identified phospholipase Cß1 (PLCß1) as a new candidate. PLCß1 is well characterized as an enzyme catalyzing the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2). In addition to lipase activity, our results indicate that PLCß1 possessed the ability of membrane tubulation. Lipase domains and inositol phospholipids binding the pleckstrin homology (PH) domain of PLCß1 were not involved, but the C-terminal sequence was responsible for this tubulation activity. Computational modeling revealed that the C terminus displays the structural homology to the BAR domains, which is well known as a membrane sensing/sculpting domain. Overexpression of PLCß1 caused plasma membrane tubulation, whereas knockdown of the protein reduced the number of caveolae and induced the evagination of caveolin-rich membrane domains. Taken together, our results suggest a new function of PLCß1: plasma membrane remodeling, and in particular, caveolae formation.


Subject(s)
Caveolae/physiology , Phospholipase C beta/metabolism , Animals , Liposomes , Mice , Mice, Inbred C57BL , Swiss 3T3 Cells
18.
Yeast ; 33(2): 37-42, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26460143

ABSTRACT

ARV1 is involved in regulating lipid homeostasis but also in the biosynthesis of glycosylphosphatidylinositol (GPI) in Saccharomyces cerevisiae. Here, we examined whether human ARV1 can complement the role of yeast ARV1 in GPI biosynthesis. Overexpression of human ARV1 could rescue the phenotypes associated with GPI anchor synthesis defect in the yeast arv1Δ mutant. The results suggest that Arv1 function in GPI biosynthesis may be conserved in all eukaryotes, from yeast to humans.


Subject(s)
Carrier Proteins/metabolism , Glycosylphosphatidylinositols/biosynthesis , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Carrier Proteins/genetics , Gene Expression , Genetic Complementation Test , Homeostasis , Humans , Lipid Metabolism , Membrane Proteins/genetics , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
19.
FASEB J ; 29(9): 3920-34, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26060215

ABSTRACT

Ceramide phosphoethanolamine (CPE), a sphingomyelin analog, is a major sphingolipid in invertebrates and parasites, whereas only trace amounts are present in mammalian cells. In this study, mushroom-derived proteins of the aegerolysin family­pleurotolysin A2 (PlyA2; K(D) = 12 nM), ostreolysin (Oly; K(D) = 1.3 nM), and erylysin A (EryA; K(D) = 1.3 nM)­strongly associated with CPE/cholesterol (Chol)-containing membranes, whereas their low affinity to sphingomyelin/Chol precluded establishment of the binding kinetics. Binding specificity was determined by multilamellar liposome binding assays, supported bilayer assays, and solid-phase studies against a series of neutral and negatively charged lipid classes mixed 1:1 with Chol or phosphatidylcholine. No cross-reactivity was detected with phosphatidylethanolamine. Only PlyA2 also associated with CPE, independent of Chol content (K(D) = 41 µM), rendering it a suitable tool for visualizing CPE in lipid-blotting experiments and biologic samples from sterol auxotrophic organisms. Visualization of CPE enrichment in the CNS of Drosophila larvae (by PlyA2) and in the bloodstream form of the parasite Trypanosoma brucei (by EryA) by fluorescence imaging demonstrated the versatility of aegerolysin family proteins as efficient tools for detecting and visualizing CPE.


Subject(s)
Fungal Proteins/chemistry , Hemolysin Proteins/chemistry , Sphingomyelins/chemistry , Sphingomyelins/metabolism , Animals , Drosophila melanogaster , Larva/chemistry , Larva/metabolism
20.
FASEB J ; 29(2): 477-93, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25389132

ABSTRACT

Sphingomyelin (SM) is a major sphingolipid in mammalian cells and is reported to form specific lipid domains together with cholesterol. However, methods to examine the membrane distribution of SM are limited. We demonstrated in model membranes that fluorescent protein conjugates of 2 specific SM-binding toxins, lysenin (Lys) and equinatoxin II (EqtII), recognize different membrane distributions of SM; Lys exclusively binds clustered SM, whereas EqtII preferentially binds dispersed SM. Freeze-fracture immunoelectron microscopy showed that clustered but not dispersed SM formed lipid domains on the cell surface. Glycolipids and the membrane concentration of SM affect the SM distribution pattern on the plasma membrane. Using derivatives of Lys and EqtII as SM distribution-sensitive probes, we revealed the exclusive accumulation of SM clusters in the midbody at the time of cytokinesis. Interestingly, apical membranes of differentiated epithelial cells exhibited dispersed SM distribution, whereas SM was clustered in basolateral membranes. Clustered but not dispersed SM was absent from the cell surface of acid sphingomyelinase-deficient Niemann-Pick type A cells. These data suggest that both the SM content and membrane distribution are crucial for pathophysiological events bringing therapeutic perspective in the role of SM membrane distribution.


Subject(s)
Cytokinesis/physiology , Sphingomyelins/metabolism , Animals , COS Cells , Cell Membrane/metabolism , Cell Polarity , Cell Survival , Chlorocebus aethiops , DNA, Complementary/metabolism , Enzyme-Linked Immunosorbent Assay , Epithelial Cells/cytology , Fibroblasts/metabolism , HeLa Cells , Humans , Infant , Liposomes/metabolism , Male , Microscopy, Atomic Force , Microscopy, Confocal , Microscopy, Immunoelectron , Niemann-Pick Disease, Type A/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL