Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Photodiagnosis Photodyn Ther ; 37: 102636, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34808398

ABSTRACT

BACKGROUND: The efficient intraoperative identification of tumors requires the development of highly specific near-infrared (NIR) probes as contrast agents. One of the most effective dyes existing in clinic oncology is Indocyanine Green (ICG). However, ICG has a rapid excretion, thus ruling out its extended accumulation in pathological tissues therefore limiting its clinical applications. ICG colloid solution (ICG NPs) consists predominantly of J-aggregates and to a lesser extent of H-aggregates and monomers. In the present study we assessed the spectral properties of ICG nanoforms in preclinical models. METHODS: We used optical spectroscopy and video fluorescence navigation to monitor accumulation and distribution of ICG monomers and ICG NPs in various tissues in mice with xenografted laryngopharyngeal carcinoma after intravenous drugs injection. RESULTS: After i.v. injection, the molecular form of ICG was not retained in the tumor and its circulation cycle averaged 5 min. Alternatively, the nanoform of the drug had a different pharmacokinetics, reaching maximum accumulation 24 h after intravenous injection. Moreover, once in the circulation, we observed a progressive accumulation in the tumor of both ICG H-aggregates and ICG monomers, but not J-aggregates. CONCLUSION: Spectral characteristics of ICG NPs indicated the presence of several fractions, namely, J- and H-aggregates along with molecular forms. These fractions had different fluorescence spectra, allowing us to track the transformation of the drug in vivo conditions. After ICG NPs administration, J-aggregates induce accumulation of monomeric forms in the tumor, enabling extended intraoperative diagnostic, and as such further studies of J-aggregates for theranostic applications in oncological surgery are of great interest.


Subject(s)
Indocyanine Green , Photochemotherapy , Animals , Coloring Agents , Fluorescent Dyes/pharmacology , Indocyanine Green/pharmacokinetics , Mice , Optical Imaging/methods , Photochemotherapy/methods
2.
Front Optoelectron ; 13(4): 371-380, 2020 Dec.
Article in English | MEDLINE | ID: mdl-36641567

ABSTRACT

The brain has an exceptionally high requirement for energy metabolism, with glucose serving as the exclusive energy source. Cancers, including glioblastoma, have a high glucose uptake and rely on aerobic glycolysis for energy metabolism. The alternation of high-efficiency oxidative phosphorylation to a low-efficiency aerobic glycolysis pathway (Warburg effect) provides macromolecules for biosynthesis and proliferation. Current research indicates that the specific metabolism in the tumor tissue and normal brain tissue in the glioma allows the use of 5-aminolevulinic acid (5 ALA)-induced protoporphyrin IX (PpIX) and methylene blue (MB) to monitor and correct the development of the tumor. The focus is on the detection of the differences between tumor cells and tumor-associated macrophages/microglia using spectroscopic and microscopic methods, based on the fluorescent signals and the difference in the drug accumulation of photosensitizers (PSs). Since 5 ALA has long been used effectively in the clinic for fluorescent surgical navigation, it was employed as an agent to identify the localization of tumor tissue and study its composition, particularly tumor and immune cells (macrophages), which have also been shown to actively accumulate PpIX. However, since PpIX is photodynamically active, it can be considered effective as the main target of tumor tissue for further successful photodynamic therapy. MB was employed to visualize resident microglia, which is important for their activation/deactivation to prevent the reprogramming of the immune cells by the tumor. Thus, using two drugs, it is possible to prevent crosstalk between tumor cells and the immune cells of different geneses.

3.
J Clin Med ; 8(12)2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31861124

ABSTRACT

This article presents the results of intraoperative fluorescent diagnostics via the endoscopic system for assessing the quality of photodynamic therapy (PDT) of head and neck cancer. The diagnosis and PDT procedures were performed on the five patients with malignant neoplasms of the vocal cords, lateral surface of the tongue, and trachea and cancer of the left parotid salivary gland. Molecular form of chlorin E6 (Ce6) was intravenously administered with a 1.0-1.1 mg/kg concentration for PDT. Fluorescent diagnostics (FD) was conducted before PDT and after PDT procedures. Control of PDT efficiency was carried out by evaluating the photobleaching of the drug (photosensitizer). The method of intraoperative fluorescent imaging allows determining the exact location of the tumor and its boundaries. The assessment of photosensitizer photobleaching in real time regime allows making quick decisions during PDT procedure, which helps improving the quality of patients' treatment. The results showed the convenience of endoscopic fluorescent video system in various nosologies of head and neck cancer. Therefore, this diagnostic approach will improve the effectiveness of cancer treatment.

4.
J Clin Med ; 8(10)2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31618880

ABSTRACT

Conventional 3D multicellular tumor spheroids of head and neck squamous cell carcinoma (HNSCC) consisting exclusively of cancer cells have some limitations. They are compact cell aggregates that do not interact with their extracellular milieu, thus suffering from both insufficient extracellular matrix (ECM) deposition and absence of different types of stromal cells. In order to better mimic in vivo HNSCC tumor microenvironment, we have constructed a 3D stroma-rich in vitro model of HNSCC, using cancer-associated MeWo skin fibroblasts and FaDu pharynx squamous cell carcinoma. The expression of stromal components in heterospheroids was confirmed by immunochemical staining. The generated co-culture FaDu/MeWo spheroids were applied to study penetration, distribution and antitumor efficacy of photoactive drugs such as Temoporfin and Chlorin e6 used in the photodynamic therapy flow cytometry and fluorescence microscopy techniques. We also investigated the distribution of photodiagnostic agent Indocyanine Green. We demonstrated that the presence of stroma influences the behavior of photoactive drugs in different ways: (i) No effect on Indocyanine Green distribution; (ii) lower accumulation of Chlorin e6; (iii) better penetration and PDT efficiency of Temoporfin. Overall, the developed stroma-rich spheroids enlarge the arsenal of in vitro pre-clinical models for high-throughput screening of anti-cancer drugs.

SELECTION OF CITATIONS
SEARCH DETAIL
...