Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 122(9): 2329-2343, 2018 Mar 08.
Article in English | MEDLINE | ID: mdl-29442510

ABSTRACT

(D3-)Methanol-nitrogen monoxide (CH3OH/CD3OH-NO) ices were exposed to ionizing radiation to facilitate the eventual determination of the CH3NO2 potential energy surface (PES) in the condensed phase. Reaction intermediates and products were monitored via infrared spectroscopy (FTIR) and photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) during the irradiation and temperature controlled desorption (TPD) phase, respectively. Distinct photoionization energies were utilized to discriminate the isomer(s) formed in these processes. The primary methanol radiolysis products were the methoxy (CH3O) and hydroxymethyl (CH2OH) radicals along with atomic hydrogen. The former was found to react barrierlessly with nitrogen monoxide resulting in the formation of cis- and trans-methyl nitrite (CH3ONO), which is the most abundant product that can be observed in the irradiated samples. On the other hand, the self-recombination of hydroxymethyl radicals yielding ethylene glycol (HO(CH2)2OH) and glycerol (HOCH2CH2(OH)CH2OH) is preferred over the recombination with nitrogen monoxide to nitrosomethanol (HOCH2NO).

2.
J Phys Chem A ; 121(40): 7477-7493, 2017 Oct 12.
Article in English | MEDLINE | ID: mdl-28892389

ABSTRACT

We irradiated binary ice mixtures of ammonia (NH3) and oxygen (O2) ices at astrophysically relevant temperatures of 5.5 K with energetic electrons to mimic the energy transfer process that occurs in the track of galactic cosmic rays. By monitoring the newly formed molecules online and in situ utilizing Fourier transform infrared spectroscopy complemented by temperature-programmed desorption studies with single-photon photoionization reflectron time-of-flight mass spectrometry, the synthesis of hydroxylamine (NH2OH), water (H2O), hydrogen peroxide (H2O2), nitrosyl hydride (HNO), and a series of nitrogen oxides (NO, N2O, NO2, N2O2, N2O3) was evident. The synthetic pathway of the newly formed species, along with their rate constants, is discussed exploiting the kinetic fitting of the coupled differential equations representing the decomposition steps in the irradiated ice mixtures. Our studies suggest the hydroxylamine is likely formed through an insertion mechanism of suprathermal oxygen into the nitrogen-hydrogen bond of ammonia at such low temperatures. An isotope-labeled experiment examining the electron-irradiated D3-ammonia-oxygen (ND3-O2) ices was also conducted, which confirmed our findings. This study provides clear, concise evidence of the formation of hydroxylamine by irradiation of interstellar analogue ices and can help explain the question how potential precursors to complex biorelevant molecules may form in the interstellar medium.

3.
Chemphyschem ; 18(8): 882-889, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28129476

ABSTRACT

Exploiting photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) combined with electronic structure calculations, it is shown that the hitherto elusive silylketene molecule (H3 SiC(H)=C=O)-the isovalent counterpart of the well-known methylketene molecule-is forming via interaction of energetic electrons with low-temperature silane-carbon monoxide ices. In combination with the infrared spectroscopically detected triplet dicarbon monoxide reactant, electronic structure calculations suggest that dicarbon monoxide reacts with silane via a de facto insertion of the terminal carbon atom into a silicon-hydrogen single bond. This is followed by non-adiabatic reaction dynamics triggered by the heavy silicon atom intersystem crossing from the triplet to the singlet manifold, eventually leading to the formation of silylketene. The non-equilibrium nature of the elementary reactions within the exposed ices results in an exciting and novel chemistry which cannot be explored via traditional preparative chemistry. Since the replacement of hydrogen in silane can introduce side groups such as silyl or alkyl, the reaction of triplet dicarbon monoxide with silane represents the parent system for a previously disregarded reaction class revealing an elegant path to access the largely reactive group of silylketenes.

4.
Inorg Chem ; 55(17): 8776-85, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27513820

ABSTRACT

A novel approach for the synthesis and identification of higher silanes (SinH2n+2, where n ≤ 19) is presented. Thin films of (d4-)silane deposited onto a cold surface were exposed under ultra-high-vacuum conditions to energetic electrons and sampled on line and in situ via infrared and ultraviolet-visible spectroscopy. Gas phase products released by fractional sublimation in the warm-up phase after the irradiation were probed via a reflectron time-of-flight mass spectrometer coupled with a tunable vacuum ultraviolet photon ionization source. The formation mechanisms of (higher) silanes were investigated by irradiating codeposited 1:1 silane (SiH4)/d4-silane (SiD4) ices, suggesting that both radical-radical recombination and radical insertion pathways contribute to the formation of disilane along with higher silanes up to nonadecasilane (Si19H40).

5.
Chemphyschem ; 17(17): 2726-35, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27344990

ABSTRACT

The remarkable versatility of triazenes in synthesis, polymer chemistry and pharmacology has led to numerous experimental and theoretical studies. Surprisingly, only very little is known about the most fundamental triazene: the parent molecule with the chemical formula N3 H3 . Here we observe molecular, isolated N3 H3 in the gas phase after it sublimes from energetically processed ammonia and nitrogen films. Combining theoretical studies with our novel detection scheme of photoionization-driven reflectron time-of-flight mass spectroscopy we can obtain information on the isomers of triazene formed in the films. Using isotopically labeled starting material, we can additionally gain insight in the formation pathways of the isomers of N3 H3 under investigation and identify the isomers formed as triazene (H2 NNNH) and possibly triimide (HNHNNH).


Subject(s)
Ammonia/chemistry , Imides/chemical synthesis , Triazenes/chemical synthesis , Ultraviolet Rays , Imides/chemistry , Isotope Labeling , Quantum Theory , Triazenes/chemistry
6.
J Phys Chem A ; 119(50): 12562-78, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26535955

ABSTRACT

The crossed molecular beam reactions of the ground-state silylidyne radical (SiH; X(2)Π) with allene (H2CCCH2; X(1)A1) and D4-allene (D2CCCD2; X(1)A1) were carried out at collision energies of 30 kJ mol(-1). Electronic structure calculations propose that the reaction of silylidyne with allene has no entrance barrier and is initiated by silylidyne addition to the π electron density of allene either to one carbon atom (C1/C2) or to both carbon atoms simultaneously via indirect (complex forming) reaction dynamics. The initially formed addition complexes isomerize via two distinct reaction pathways, both leading eventually to a cyclic SiC3H5 intermediate. The latter decomposes through a loose exit transition state via an atomic hydrogen loss perpendicularly to the plane of the decomposing complex (sideways scattering) in an overall exoergic reaction (experimentally: -19 ± 13 kJ mol(-1); computationally: -5 ± 3 kJ mol(-1)). This hydrogen loss yields the hitherto elusive 2-methyl-1-silacycloprop-2-enylidene molecule (c-SiC3H4), which can be derived from the closed-shell cyclopropenylidene molecule (c-C3H2) by replacing a hydrogen atom with a methyl group and the carbene carbon atom by the isovalent silicon atom. The synthesis of the 2-methyl-1-silacycloprop-2-enylidene molecule in the bimolecular gas-phase reaction of silylidyne with allene enriches our understanding toward the formation of organosilicon species in the gas phase of the interstellar medium in particular via exoergic reactions of no entrance barrier. This facile route to 2-methyl-1-silacycloprop-2-enylidene via a silylidyne radical reaction with allene opens up a versatile approach to form hitherto poorly characterized silicon-bearing species in extraterrestrial environments; this reaction class might represent the missing link, leading from silicon-bearing radicals via organosilicon chemistry eventually to silicon-carbon-rich interstellar grains even in cold molecular clouds where temperatures are as low as 10 K.

7.
Chemphyschem ; 16(15): 3139-42, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26331382

ABSTRACT

We report the detection of triazane (N3 H5 ) in the gas phase. Triazane is a higher order nitrogen hydride of ammonia (NH3 ) and hydrazine (N2 H4 ) of fundamental importance for the understanding of the stability of single-bonded chains of nitrogen atoms and a potential key intermediate in hydrogen-nitrogen chemistry. The experimental results along with electronic-structure calculations reveal that triazane presents a stable molecule with a nitrogen-nitrogen bond length that is a few picometers shorter than that of hydrazine and has a lifetime exceeding 6±2 µs at a sublimation temperature of 170 K. Triazane was synthesized through irradiation of ammonia ice with energetic electrons and was detected in the gas phase upon sublimation of the ice through soft vacuum ultraviolet (VUV) photoionization coupled with a reflectron-time-of-flight mass spectrometer. Isotopic substitution experiments exploiting [D3 ]-ammonia ice confirmed the identification through the detection of its fully deuterated counterpart [D5 ]-triazane (N3 D5 ).

8.
Phys Chem Chem Phys ; 17(11): 7514-27, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25706523

ABSTRACT

Solid nitromethane (CH3NO2) along with its isotopically labelled counterpart D3-nitromethane (CD3NO2) ices were exposed to Lyman α photons to investigate the mechanism involved in the decomposition of energetic materials in the condensed phase. The chemical processes in the ices were monitored online and in situ via infrared spectroscopy complimented by temperature programmed desorption studies utilizing highly sensitive reflectron time-of-flight mass spectrometry coupled with pulsed photoionization (ReTOF-PI) at 10.49 eV. The infrared data revealed the formation of cis-methylnitrite (CH3ONO), formaldehyde (H2CO), water (H2O), carbon monoxide (CO), and carbon dioxide (CO2). Upon sublimation of the irradiated samples, three classes of higher molecular weight products, which are uniquely formed in the condensed phase, were identified via ReTOF-PI: (i) nitroso compounds [nitrosomethane (CH3NO), nitrosoethane (C2H5NO), nitrosopropane (C3H7NO)], (ii) nitrite compounds [methylnitrite (CH3ONO), ethylnitrite (C2H5ONO), propylnitrite (C3H7ONO)], and (iii) higher molecular weight molecules [CH3NONOCH3, CH3NONO2CH3, CH3OCH2NO2, ONCH2CH2NO2]. The mechanistical information obtained in the present study suggest that the decomposition of nitromethane in the condensed phase is more complex compared to the gas phase under collision-free conditions opening up not only hitherto unobserved decomposition pathways of nitromethane (hydrogen atom loss, oxygen atom loss, retro carbene insertion), but also the blocking of several initial decomposition steps due to the 'matrix cage effect'.

9.
Phys Chem Chem Phys ; 14(31): 11099-106, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22766689

ABSTRACT

The reaction dynamics of the boron monoxide radical ((11)BO; X(2)Σ(+)) with ethylene (C(2)H(4); X(1)A(g)) were investigated at a nominal collision energy of 12.2 kJ mol(-1) employing the crossed molecular beam technique and supported by ab initio and statistical (RRKM) calculations. The reaction is governed by indirect scattering dynamics with the boron monoxide radical attacking the carbon-carbon double bond of the ethylene molecule without entrance barrier with the boron atom. This addition leads to a doublet radical intermediate (O(11)BH(2)CCH(2)), which either undergoes unimolecular decomposition through hydrogen atom emission from the C1 atom via a tight transition state located about 13 kJ mol(-1) above the separated products or isomerizes via a hydrogen shift to the O(11)BHCCH(3) radical, which also can lose a hydrogen atom from the C1 atom. Both processes lead eventually to the formation of the vinyl boron monoxide molecule (C(2)H(3)BO; X(1)A'). The overall reaction was determined to be exoergic by about 40 kJ mol(-1). The reaction dynamics are also compared to the isoelectronic ethylene (C(2)H(4); X(1)A(g)) - cyano radical (CN; X(2)Σ(+)) system studied earlier.

10.
Philos Trans A Math Phys Eng Sci ; 370(1968): 2710-27, 2012 Jun 13.
Article in English | MEDLINE | ID: mdl-22547240

ABSTRACT

We summarize here our experimental studies of the high rovibrational energy levels of water. The use of double-resonance vibrational overtone excitation followed by energy-selective photofragmentation and laser-induced fluorescence detection of OH fragments allowed us to measure previously inaccessible rovibrational energies above the seventh OH-stretch overtone. Extension of the experimental approach to triple-resonance excitation provides access to rovibrational levels via transitions with significant transition dipole moments (mainly OH-stretch overtones) up to the dissociation threshold of the O-H bond. A collisionally assisted excitation scheme enables us to probe vibrations that are not readily accessible via pure laser excitation. Observation of the continuous absorption onset yields a precise value for the O-H bond dissociation threshold, 41 145.94 ± 0.15 cm(-1). Finally, we detect long-lived resonances as sharp peaks in spectra above the dissociation threshold.

11.
Phys Chem Chem Phys ; 14(2): 529-37, 2012 Jan 14.
Article in English | MEDLINE | ID: mdl-22108533

ABSTRACT

The crossed beam reactions of the methylidyne radical with ethylene (CH(X(2)Π) + C(2)H(4)(X(1)A(1g))), methylidyne with D4-ethylene (CH(X(2)Π) + C(2)D(4)(X(1)A(1g))), and D1-methylidyne with ethylene (CD(X(2)Π) + C(2)H(4)(X(1)A(1g))) were conducted at nominal collision energies of 17-18 kJ mol(-1) to untangle the chemical dynamics involved in the formation of distinct C(3)H(4) isomers methylacetylene (CH(3)CCH), allene (H(2)CCCH(2)), and cyclopropene (c-C(3)H(4)) via C(3)H(5) intermediates. By tracing the atomic hydrogen and deuterium loss pathways, our experimental data suggest indirect scattering dynamics and an initial addition of the (D1)-methylidyne radical to the carbon-carbon double bond of the (D4)-ethylene reactant forming a cyclopropyl radical intermediate (c-C(3)H(5)/c-C(3)D(4)H/c-C(3)H(4)D). The latter was found to ring-open to the allyl radical (H(2)CCHCH(2)/D(2)CCHCD(2)/H(2)CCDCH(2)). This intermediate was found to be long lived with life times of at least five times its rotational period and decomposed via atomic hydrogen/deuterium loss from the central carbon atom (C2) to form allene via a rather loose exit transition state in an overall strongly exoergic reaction. Based on the experiments with partially deuterated reactants, no compelling evidence could be provided to support the formation of the cyclopropene and methylacetylene isomers under single collision conditions. Likewise, hydrogen/deuterium shifts in the allyl radical intermediates or an initial insertion of the (D1)-methylidyne radical into the carbon-hydrogen/deuterium bond of the (D4)-ethylene reactant were found to be-if at all-of minor importance. Our experiments propose that in hydrocarbon-rich atmospheres of planets and their moons such as Saturn's satellite Titan, the reaction of methylidyne radicals should lead predominantly to the hitherto elusive allene molecule in these reducing environments.

12.
Phys Chem Chem Phys ; 14(2): 575-88, 2012 Jan 14.
Article in English | MEDLINE | ID: mdl-22108798

ABSTRACT

The crossed molecular beam reactions of ground state methylidyne, CH(X(2)Π), with D2-acetylene, C(2)D(2)(X(1)Σ(g)(+)), and of D1-methylidyne, CD(X(2)Π), with acetylene, C(2)H(2)(X(1)Σ(g)(+)), were conducted under single collision conditions at a collision energy of 17 kJ mol(-1). Four competing reaction channels were identified in each system following atomic 'hydrogen' (H/D) and molecular 'hydrogen' (H(2)/D(2)/HD) losses. The reaction dynamics were found to be indirect via complex formation and were initiated by two barrierless-addition pathways of methylidyne/D1-methylidyne to one and to both carbon atoms of the D2-acetylene/acetylene reactant yielding HCCDCD/DCCHCH and c-C(3)D(2)H/c-C(3)H(2)D collision complexes, respectively. The latter decomposed via atomic hydrogen/deuterium ejection to form the thermodynamically most stable cyclopropenylidene species (c-C(3)H(2), c-C(3)D(2), c-C(3)DH). On the other hand, the HCCDCD/DCCHCH adducts underwent hydrogen/deuterium shifts to form the propargyl radicals (HDCCCD, D(2)CCCH; HDCCCH, H(2)CCCD) followed by molecular 'hydrogen' losses within the rotational plane of the decomposing complex yielding l-C(3)H/l-C(3)D. Quantitatively, our crossed beam studies suggest a dominating atomic compared to molecular 'hydrogen' loss with fractions of 81 ± 23% vs. 19 ± 10% for the CD/C(2)H(2) and 87 ± 30% vs. 13 ± 4% for the CH/C(2)D(2) systems. The role of these reactions in the formation of interstellar isomers of C(3)H(2) and C(3)H is also discussed.

13.
Rev Sci Instrum ; 82(8): 083107, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21895233

ABSTRACT

Various ablation sources generating supersonic boron monoxide (BO; X(2)Σ(+)) radical beams utilizing oxygen (O(2)), carbon dioxide (CO(2)), methanol (CH(3)OH), and water (H(2)O) as seeding gases were characterized in a crossed molecular beams setup by mass resolved time-of-flight spectroscopy and spectroscopically via laser induced fluorescence. Intensities of the sources as well as rovibrational energy distributions were analyzed. The molecular oxygen source was found to produce excessive amount of an unwanted BO(2) byproduct. Internal vibrational energy of boron monoxide generated in the water and methanol sources was too high to be considered for the study of dynamics of ground state radicals. The best combination of intensity, purity, and low internal energy was found in the carbon dioxide source to generate boron monoxide. We successfully tested the boron monoxide (BO; X(2)Σ(+)) radical beam source in crossed beams reactions with acetylene (C(2)H(2)) and ethylene (C(2)H(4)). The source was also compared with supersonic beams of the isoelectronic cyano (CN; X(2)Σ(+)) radical.

14.
Phys Chem Chem Phys ; 13(18): 8560-70, 2011 May 14.
Article in English | MEDLINE | ID: mdl-21437305

ABSTRACT

The reaction dynamics of boron monoxide (BO; X(2)Σ(+)) with acetylene (C(2)H(2); X(1)Σ(g)(+)) were investigated under single collision conditions at a collision energy of 13 kJ mol(-1) employing the crossed molecular beam technique; electronic structure RRKM calculations were conducted to complement the experimental data. The reaction was found to have no entrance barrier and proceeded via indirect scattering dynamics initiated by an addition of the boron monoxide radical with its boron atom to the carbon-carbon triple bond forming the O(11)BHCCH intermediate. The latter decomposed via hydrogen atom emission to form the linear O(11)BCCH product through a tight exit transition state. The experimentally observed sideways scattering suggests that the hydrogen atom leaves perpendicularly to the rotational plane of the decomposing complex and almost parallel to the total angular momentum vector. RRKM calculations indicate that a minor micro channel could involve a hydrogen migration in the initial collision to form an O(11)BCCH(2) intermediate, which in turn can also emit atomic hydrogen. The overall reaction to form O(11)BCCH plus atomic hydrogen from the separated reactants was determined to be exoergic by 62 ± 8 kJ mol(-1). The reaction dynamics were also compared with the isoelectronic reaction of the cyano radical (CN; X(2)Σ(+)) with acetylene (C(2)H(2); X(1)Σ(g)(+)) studied earlier.

15.
Phys Chem Chem Phys ; 13(1): 240-52, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21082093

ABSTRACT

We carried out the crossed molecular beam reaction of ground state methylidyne radicals, CH(X(2)Π), with acetylene, C(2)H(2)(X(1)Σ(g)(+)), at a nominal collision energy of 16.8 kJ mol(-1). Under single collision conditions, we identified both the atomic and molecular hydrogen loss pathways forming C(3)H(2) and C(3)H isomers, respectively. A detailed analysis of the experimental data suggested the formation of c-C(3)H(2) (31.5 ± 5.0%), HCCCH/H(2)CCC (59.5 ± 5.0%), and l-HCCC (9.0 ± 2.0%). The reaction proceeded indirectly via complex formation and involved the unimolecular decomposition of long-lived propargyl radicals to form l-HCCC plus molecular hydrogen and HCCCH/H(2)CCC plus atomic hydrogen. The formation of c-C(3)H(2) was suggested to be produced via unimolecular decomposition of the cyclopropenyl radical, which in turn could be accessed via addition of the methylidyne radical to both carbon atoms of the acetylene molecule or after an initial addition to only one acetylenic carbon atom via ring closure. This investigation brings us closer to unraveling of the reaction of important combustion radicals-methylidyne-and the connected unimolecular decomposition of chemically activated propargyl radicals. This also links to the formation of C(3)H and C(3)H(2) in combustion flames and in the interstellar medium.

16.
J Phys Chem A ; 114(46): 12148-54, 2010 Nov 25.
Article in English | MEDLINE | ID: mdl-21038899

ABSTRACT

The elementary reaction of ground state boron atoms, (B((2)P(j))), with ammonia (NH(3)(X(1)A(1))) was conducted under single collision conditions at a collision energy of 20.5 ± 0.4 kJ mol(-1) in a crossed molecular beams machine. Combined with electronic structure calculations, our experimental results suggested that the reaction was initiated by a barrier-less addition of the boron atom to the nonbonding electron pair of the nitrogen atom forming a weakly bound BNH(3) collision complex. This intermediate underwent a hydrogen shift to a doublet HBNH(2) radical that decomposed via atomic hydrogen loss to at least the imidoborane (HBNH(X(1)Σ(+)) molecule, an isoelectronic species of acetylene (HCCH(X(1)Σ(g)(+))). Our studies are also discussed in light of the isoelectronic C(2)H(3) potential energy surface accessed via the isoelectronic carbon-methyl system.

17.
J Chem Phys ; 133(8): 081103, 2010 Aug 28.
Article in English | MEDLINE | ID: mdl-20815552

ABSTRACT

We employ triple-resonance vibrational overtone excitation to access quasibound states of water from several fully characterized bound states of the molecule. Comparison of the measured dissociation spectra allows a rigorous assignment of rotational quantum numbers J, nuclear spin and parity, and a tentative vibrational characterization of the observed resonances. Their asymmetrical shapes (Fano profiles) reflect interference of dipole moments for transitions to these resonances with that to the dissociative continuum. The assignments and Fano profile parameters of the resonances stand as a benchmark for the extension of accurate quantum-mechanical calculations to activated complexes of water. The narrow widths of some of these resonances indicate that water molecules may survive for as long as up to 60 ps in states above the dissociation threshold. We consider the possible implication of such long-lived states for the kinetics of water dissociation and the OH+H association reaction.

18.
J Phys Chem A ; 114(41): 10936-43, 2010 Oct 21.
Article in English | MEDLINE | ID: mdl-20873840

ABSTRACT

A crossed molecular beams experiment with ground state boron atoms, B((2)P(j)), and diacetylene, C(4)H(2)(X(1)Σ(g)(+)), was conducted at a collision energy of 21.1 ± 0.3 kJ mol(-1) under single collision conditions and combined with electronic structure calculations on the (11)BC(4)H(2) potential energy surface. Our combined experimental and computational studies indicate that the reaction proceeds without entrance barrier and involves indirect scattering dynamics. Three initial collision complexes, in which the boron atom adds to one or two carbon atoms, were characterized computationally. These intermediates rearranged via hydrogen shifts and/or successive ring-opening/ring closure processes on the doublet surface ultimately yielding a cyclic, C(s) symmetric (11)BC(4)H(2) intermediate. The latter was found to decompose via atomic hydrogen loss to yield a cyclic (11)BC(4)H(X(1)A') isomer; to a minor amount, the cyclic intermediate isomerized via ring-opening to the linear HCCBCCH(X(2)Σ(g)(+)) molecule, which in turn emitted a hydrogen atom to yield the linear HCCBCC(X(1)Σ(+)) molecule. The overall reactions to form these isomers were found to be exoergic by 55 and 61 J mol(-1), respectively, and involved rather loose exit transition states. On the basis of the energetics, upper limits of two energetically less stable species, the linear HBCCCC(X(1)Σ(+)) and BCCCCH(X(1)Σ(+)) species, were derived to be 12 and 2.2%, respectively. The dynamics of this reaction are also compared with the reaction of ground state boron atoms with acetylene studied earlier in our group.

19.
J Phys Chem A ; 114(16): 5256-62, 2010 Apr 29.
Article in English | MEDLINE | ID: mdl-20369875

ABSTRACT

The crossed molecular beam experiment of the deuterated ethynyl radical (C(2)D; X(2)Sigma(+)) with benzene [C(6)H(6)(X(1)A(1g))] and its fully deuterated analog [C(6)D(6)(X(1)A(1g))] was conducted at a collision energy of 58.1 kJ mol(-1). Our experimental data suggest the formation of the phenylacetylene-d(6) via indirect reactive scattering dynamics through a long-lived reaction intermediate; the reaction is initiated by a barrierless addition of the ethynyl-d(1) radical to benzene-d(6). This initial collision complex was found to decompose via a tight exit transition state located about 42 kJ mol(-1) above the separated products; here, the deuterium atom is ejected almost perpendicularly to the rotational plane of the decomposing intermediate and almost parallel to the total angular momentum vector. The overall experimental exoergicity of the reaction is shown to be 121 +/- 10 kJ mol(-1); this compares nicely with the computed reaction energy of -111 kJ mol(-1). Even though the experiment was conducted at a collisional energy higher than equivalent temperatures typically found in the atmosphere of Titan (94 K and higher), the reaction may proceed in Titan's atmosphere as it involves no entrance barrier, all transition states involved are below the energy of the separated reactants, and the reaction is exoergic. Further, the phenylacetylene was found to be the sole reaction product.


Subject(s)
Acetylene/analogs & derivatives , Atmosphere/chemistry , Extraterrestrial Environment/chemistry , Saturn , Acetylene/chemical synthesis , Acetylene/chemistry , Temperature , Thermodynamics
20.
J Am Chem Soc ; 132(8): 2672-83, 2010 Mar 03.
Article in English | MEDLINE | ID: mdl-20136077

ABSTRACT

Reactions of dicarbon molecules (C(2)) with C(4)H(6) isomers such as 1,3-butadiene represent a potential, but hitherto unnoticed, route to synthesize the first aromatic C(6) ring in hydrocarbon flames and in the interstellar medium where concentrations of dicarbon transient species are significant. Here, crossed molecular beams experiments of dicarbon molecules in their X(1)Sigma(g)(+) electronic ground state and in the first electronically excited a(3)Pi(u) state have been conducted with 1,3-butadiene and two partially deuterated counterparts (1,1,4,4-D4-1,3-butadiene and 2,3-D2-1,3-butadiene) at two collision energies of 12.7 and 33.7 kJ mol(-1). Combining these scattering experiments with electronic structure and RRKM calculations on the singlet and triplet C(6)H(6) surfaces, our investigation reveals that the aromatic phenyl radical is formed predominantly on the triplet surface via indirect scattering dynamics through a long-lived reaction intermediate. Initiated by a barrierless addition of triplet dicarbon to one of the terminal carbon atoms of 1,3-butadiene, the collision complex undergoes trans-cis isomerization followed by ring closure and hydrogen migration prior to hydrogen atom elimination, ultimately forming the phenyl radical. The latter step emits the hydrogen atom almost perpendicularly to the rotational plane of the decomposing intermediate and almost parallel to the total angular momentum vector. On the singlet surface, smaller contributions of phenyl radical could not be excluded; experiments with partially deuterated 1,3-butadiene indicate the formation of the thermodynamically less stable acyclic H(2)CCHCCCCH(2) isomer. This study presents the very first experimental evidence, contemplated by theoretical studies, that under single collision conditions an aromatic hydrocarbon molecule can be formed in a bimolecular gas-phase reaction via reaction of two acyclic molecules involving cyclization processes at collision energies highly relevant to combustion flames.

SELECTION OF CITATIONS
SEARCH DETAIL
...