Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomicrofluidics ; 15(2): 024112, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33912267

ABSTRACT

We present a microfluidic technique that generates asymmetric giant unilamellar vesicles (GUVs) in the size range of 2-14 µm. In our method, we (i) create water-in-oil emulsions as the precursors to build synthetic vesicles, (ii) deflect the emulsions across two oil streams containing different phospholipids at high throughput to establish an asymmetric architecture in the lipid bilayer membranes, and (iii) direct the water-in-oil emulsions across the oil-water interface of an oscillating oil jet in a co-flowing confined geometry to encapsulate the inner aqueous phase inside a lipid bilayer and complete the fabrication of GUVs. In the first step, we utilize a flow-focusing geometry with precisely controlled pneumatic pressures to form monodisperse water-in-oil emulsions. We observed different regimes in forming water-in-oil multiphase flows by changing the applied pressures and discovered a hysteretic behavior in jet breakup and droplet generation. In the second step of GUV fabrication, an oil stream containing phospholipids carries the emulsions into a separation region where we steer the emulsions across two parallel oil streams using active dielectrophoretic and pinched-flow fractionation separations. We explore the effect of applied DC voltage magnitude and carrier oil stream flow rate on the separation efficiency. We develop an image processing code that measures the degree of mixing between the two oil streams as the water-in-oil emulsions travel across them under dielectrophoretic steering to find the ideal operational conditions. Finally, we utilize an oscillating co-flowing jet to complete the formation of asymmetric giant unilamellar vesicles and transfer them to an aqueous phase. We investigate the effect of flow rates on properties of the co-flowing jet oscillating in the whipping mode (i.e., wavelength and amplitude) and define the phase diagram for the oil-in-water jet. Assays used to probe the lipid bilayer membrane of fabricated GUVs showed that membranes were unilamellar, minimal residual oil remained trapped between the two lipid leaflets, and 83% asymmetry was achieved across the lipid bilayers of GUVs.

2.
Soft Matter ; 15(19): 3938-3948, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31011738

ABSTRACT

The double-membrane cellular envelope of Gram-negative bacteria enables them to endure harsh environments and represents a barrier to many clinically available antibiotics. The outer membrane (OM) is exposed to the environment and is the first point of contact involved in bacterial processes such as signaling, pathogenesis, and motility. As in the cytoplasmic membrane, the OM in Gram-negative bacteria has a phospholipid-rich inner leaflet and an outer leaflet that is predominantly composed of lipopolysaccharide (LPS). We report on a microfluidic technique for fabricating monodisperse asymmetric giant unilamellar vesicles (GUVs) possessing the Gram-negative bacterial OM lipid composition. Our continuous microfluidic fabrication technique generates 50-150 µm diameter water-in-oil-in-water double emulsions at high-throughput. The water-oil and oil-water interfaces facilitate the self-assembly of phospholipid and LPS molecules to create the inner and outer leaflets of the lipid bilayer, respectively. The double emulsions have ultrathin oil shells, which minimizes the amount of residual organic solvent that remains trapped between the leaflets of the GUV membrane. An extraction process by ethanol and micropipette aspiration of the ultrathin oil shells triggers an adhesive interaction between the two lipid monolayers assembled on the water-oil and oil-water interfaces (i.e., dewetting transition), forcing them to contact and form a lipid bilayer membrane. The effect of different inner-leaflet lipid compositions on the emulsion/vesicle stability and the dewetting transition is investigated. We also report on the values for bending and area expansion moduli of synthetic asymmetric model membranes with lipid composition/architecture that is physiologically relevant to the OM in Pseudomonas aeruginosa bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...