Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
MycoKeys ; 99: 251-268, 2023.
Article in English | MEDLINE | ID: mdl-37867781

ABSTRACT

The discovery and study of three new species of Trimmatothelopsis from Southwestern North America, T.californica, T.mexicana, and T.novomexicana, adds not only to the diversity of the genus and family but generated new insights into the occurrence of two ascus types in the genus and the variety of conidiogenous cells and conidia. Trimmatothelopsis now includes 15 species with a mainly Holarctic distribution (Asia, Europe, North America) and one species in Australia. A key is supplied to the genus. An overview of the genus Trimmatothelopsis is given, including differentiation from other genera of Acarosporaceae. The monotypic genus Thelocarpella is considered to be a synonym of Trimmatothelopsis. The new combination Trimmatothelopsiswirthii is proposed. The ascus type is shown to be variable in the genus with species with two types being intermixed with each other in our phylogeny.

2.
Front Microbiol ; 12: 769304, 2021.
Article in English | MEDLINE | ID: mdl-34970234

ABSTRACT

Lichens are an iconic example of symbiotic systems whose ecology is shaped by the requirements of the symbionts. Previous studies suggest that fungal (mycobionts) as well as photosynthesizing (phycobionts or cyanobionts) partners have a specific range of acceptable symbionts that can be chosen according to specific environmental conditions. This study aimed to investigate the effects of climatic conditions and mycobiont identity on phycobiont distribution within the lichen genera Stereocaulon, Cladonia, and Lepraria. The study area comprised the Canary Islands, Madeira, Sicily, and the Aeolian Islands, spanning a wide range of climatic conditions. These islands are known for their unique and diverse fauna and flora; however, lichen phycobionts have remained unstudied in most of these areas. In total, we genetically analyzed 339 lichen samples. The phycobiont pool differed significantly from that outside the studied area. Asterochloris mediterranea was identified as the most abundant phycobiont. However, its distribution was limited by climatic constraints. Other species of Asterochloris and representatives of the genera Chloroidium, Vulcanochloris, and Myrmecia were also recovered as phycobionts. The selection of symbiotic partners from the local phycobiont pool was driven by mycobiont specificity (i.e., the taxonomic range of acceptable partners) and the environmental conditions, mainly temperature. Interestingly, the dominant fungal species responded differently in their selection of algal symbionts along the environmental gradients. Cladonia rangiformis associated with its phycobiont A. mediterranea in a broader range of temperatures than Stereocaulon azoreum, which favors other Asterochloris species along most of the temperature gradient. Stereocaulon vesuvianum associated with Chloroidium spp., which also differed in their temperature optima. Finally, we described Stereocaulon canariense as a new endemic species ecologically distinct from the other Stereocaulon species on the Canary Islands.

3.
Mycologia ; 111(4): 574-592, 2019.
Article in English | MEDLINE | ID: mdl-31099728

ABSTRACT

Micarea is a lichenized genus in the family Pilocarpaceae (Ascomycota). We studied the phylogeny and reassessed the current taxonomy of the M. prasina group. We focused especially on the taxonomic questions concerning the type species M. prasina and, furthermore, challenges concerning type specimens that are too old for successful DNA barcoding and molecular studies. The phylogeny was reconstructed using nuc rDNA internal transcribed spacer region (ITS1-5.8S-ITS2 = ITS), mitochrondrial rDNA small subunit (mtSSU), and replication licensing factor MCM7 gene from 31 species. Fifty-six new sequences were generated. The data were analyzed using maximum parsimony and maximum likelihood methods. The results revealed four undescribed, well-supported lineages. Three lineages represent new species described here as M. fallax, M. flavoleprosa, and M. pusilla. In addition, our results support the recognition of M. melanobola as a distinct species. Micarea fallax is characterized by a vivid to olive green thallus composed of aggregated granules and whitish or brownish apothecia sometimes with grayish tinge (Sedifolia-gray pigment).Micarea flavoleprosa has a thick, wide-spreading yellowish green, whitish green to olive green sorediate thallus and lacks the Sedifolia-gray pigmentation. The species is mostly anamorphic, developing apothecia rarely. Micarea melanobola is characterized by a pale to dark vivid green granular thallus and darkly pigmented apothecia (Sedifolia-gray). Micarea pusilla is characterized by a whitish green to olive green thinly granular or membranous thallus, numerous and very small whitish apothecia lacking the Sedifolia-gray pigment, and by the production of methoxymicareic acid. Micarea fallax, M. flavoleprosa, and M. melanobola produce micareic acid. The reliability of crystalline granules as a character for species delimitation was investigated and was highly informative for linking the old type specimen of M. prasina to fresh material.


Subject(s)
Ascomycota/classification , Classification , Ascomycota/cytology , Ascomycota/genetics , DNA, Fungal/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/genetics , Lichens/classification , Phylogeny
4.
PLoS One ; 14(5): e0216675, 2019.
Article in English | MEDLINE | ID: mdl-31136587

ABSTRACT

Taxonomic identifications in some groups of lichen-forming fungi have been challenge largely due to the scarcity of taxonomically relevant features and limitations of morphological and chemical characters traditionally used to distinguish closely related taxa. Delineating species boundaries in closely related species or species complexes often requires a range of multisource data sets and comprehensive analytical methods. Here we aim to examine species boundaries in a group of saxicolous lichen forming fungi, the Aspiciliella intermutans complex (Megasporaceae), widespread mainly in the Mediterranean. We gathered DNA sequences of the nuclear ribosomal internal transcribed spacer (nuITS), the nuclear large subunit (nuLSU), the mitochondrial small subunit (mtSSU) ribosomal DNA, and the DNA replication licensing factor MCM7 from 80 samples mostly from Iran, Caucasia, Greece and eastern Europe. We used a combination of phylogenetic strategies and a variety of empirical, sequence-based species delimitation approaches to infer species boundaries in this group. The latter included: the automatic barcode gap discovery (ABGD), the multispecies coalescent approach *BEAST and Bayesian Phylogenetics and Phylogeography (BPP) program. Different species delimitation scenarios were compared using Bayes factors species delimitation analysis. Furthermore, morphological, chemical, ecological and geographical features of the sampled specimens were examined. Our study uncovered cryptic species diversity in A. intermutans and showed that morphology-based taxonomy may be unreliable, underestimating species diversity in this group of lichens. We identified a total of six species-level lineages in the A. intermutans complex using inferences from multiple empirical operational criteria. We found little corroboration between morphological and ecological features with our proposed candidate species, while secondary metabolite data do not corroborate tree topology. The present study on the A. intermutans species-complex indicates that the genus Aspiciliella, as currently circumscribed, is more diverse in Eurasia than previously expected.


Subject(s)
Ascomycota/classification , Ascomycota/genetics , Lichens/genetics , Cell Nucleus/genetics , DNA Barcoding, Taxonomic/methods , DNA, Fungal/genetics , Lichens/classification , Mediterranean Region , Phenotype , Phylogeny , Phylogeography , Sequence Analysis, DNA , Species Specificity
5.
PLoS One ; 13(9): e0203540, 2018.
Article in English | MEDLINE | ID: mdl-30212494

ABSTRACT

Although lichenized fungi are among the most reliable indicators of forest quality and represent a considerable part of forest biodiversity, methods maximizing completeness of their species lists per area are lacking. Employing a novel methodological approach including a multi-expert competition and a search for local hot-spot plots, we have obtained outstanding data about epiphytic lichen biota in a part of the largest Central European virgin forest reserve Uholka-Shyrokyi Luh situated in Ukrainian Carpathians. Our field research consisted of two four-day periods: (1) an overall floristic survey and a search for spots with raised lichen diversity, and (2) survey in four one-hectare plots established in lichen diversity hot-spots along an altitudinal gradient. Recorded alpha-diversities in plots ranged from 181-228 species, but estimated species richness is in the range 207-322 species. Detected gamma-diversity was 387 species; estimates are 409-484 species. 93% of the species found in the forest were recorded in plots, but only 65% outside the plots. This underlines the high-efficiency of the multi-expert competitive survey in diversity hot-spot plots. Species richness in each one-hectare plot was equal to the numbers of species obtained by floristic surveys of much larger old-growth forest areas in Central Europe. Gamma-diversity detected in the Uholka primeval forest far exceeded all numbers achieved in Central European old-growth forests. Our method appears to be both effective (it obtains a more nearly complete inventory of species) and practical (the resources required are not unreasonably large).


Subject(s)
Forests , Lichens/genetics , Biodiversity , Ecosystem , Environmental Monitoring , Lichens/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...