Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
J Dairy Sci ; 102(9): 8376-8384, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31301846

ABSTRACT

Little is known about the influence of maternal antibodies and immune cells transferred through colostrum on the immune responses of calves to the currently used foot-and-mouth disease (FMD) vaccines. Here we evaluated the humoral and cellular immune responses induced by vaccination of colostrum-deprived calves and calves that received equivalent amounts of colostrum preparations that differed in the presence or absence of maternal immune cells but contained the same quantity and quality of anti-foot-and-mouth disease virus (FMDV) antibodies. Three groups of 32-d-old calves (n = 3 per group) were deprived of colostrum and fed either whole immune colostrum or a cell-free colostrum preparation containing only anti-FMDV antibodies. All groups were immunized with 1 dose of an oil-adjuvanted commercial vaccine. Blood samples were collected periodically before vaccination and weekly after vaccination. Immune responses specific to FMDV were assessed based on T-cell proliferation, IFN-γ production, total and neutralizing serum antibodies, and isotype profile. All vaccinated calves developed IFN-γ and lymphoproliferative responses, irrespective of the colostrum received. Colostrum-deprived animals responded to vaccination with a primary IgM response followed by an increase of IgG1 titers. Conversely, antibody titers decreased in all colostrum-fed calves after vaccination. This study demonstrates for the first time that maternal immune cells transferred to the calves through colostrum do not modify immune responses to FMD vaccine, and it confirms the interference of maternal antibodies in the induction of humoral but not cell-mediated immune responses.


Subject(s)
Cattle Diseases/immunology , Colostrum/immunology , Foot-and-Mouth Disease/immunology , Viral Vaccines/immunology , Adjuvants, Immunologic , Animals , Antibodies, Viral/blood , Cattle , Cattle Diseases/prevention & control , Female , Immunity, Cellular , Immunogenicity, Vaccine , Pregnancy , Vaccination/veterinary
2.
J Vet Diagn Invest ; 29(6): 926-929, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28677409

ABSTRACT

HoBi-like pestiviruses (also known as bovine viral diarrhea virus 3) have been sporadically reported from naturally infected cattle in Brazil, Asia, and Europe. Although HoBi-like viruses seem to be endemic in Brazilian cattle and buffalo, they have not been studied in the other countries of South America to our knowledge. Herein we report serologic results of buffalo from 12 large farms in Argentina located near the Brazilian border. These buffalo were not vaccinated against pestiviruses. Our results indicate that HoBi-like virus may be circulating in the northeastern region of Argentina given that half of the analyzed animals showed high levels of neutralizing antibodies against the pestivirus. The HoBi-like seropositive animals were also checked for neutralizing antibodies against BVDV-1a, BVDV-1b, and BVDV-2, and in most cases these animals had low levels or no detectable antibodies against these other pestiviruses. Our study suggests a need for continued pestivirus surveillance in Argentinean cattle and buffalo.


Subject(s)
Buffaloes , Pestivirus Infections/veterinary , Pestivirus/isolation & purification , Animals , Argentina/epidemiology , Female , Male , Pestivirus Infections/epidemiology , Pestivirus Infections/virology , Prevalence , Seroepidemiologic Studies
3.
Rev. argent. microbiol ; 47(1): 4-8, Mar. 2015. ilus, graf.
Article in English | LILACS, BINACIS | ID: biblio-1171812

ABSTRACT

Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5Ag of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle


El virus de la diarrea viral bovina (BVDV) es causante de importantes pérdidas económicas a nivel mundial. La proteína E2 es la inmunodominante del virus y es la candidata para desarrollar vacunas de subunidad. Para mejorar su inmunogenicidad, una versión truncada de la E2 (tE2) se fusionó a un anticuerpo de cadena simple (APCH), que se dirige a las células presentadoras de antígeno. Se expresaron las proteínas APCH-tE2 y tE2 en el sistema de baculovirus y su inmunogenicidad fue evaluada y comparada en cobayos; la proteína APCH-tE2 fue la que indujo la mejor respuesta humoral. Por dicha razón se la evaluó en bovinos utilizando 1,5µg de antígeno. Los animales presentaron altos títulos de anticuerpos neutralizantes contra BVDV hasta un año posinmunización. Esta nueva vacuna está en proceso de escalado y se transfirió al sector privado. Actualmente se está evaluando para su registro como la primera vacuna argentina de subunidad para bovinos


Subject(s)
Animals , Cattle , Guinea Pigs , Diarrhea Viruses, Bovine Viral/immunology , Vaccines, Subunit/biosynthesis , Antigen-Presenting Cells/drug effects , Baculoviridae/immunology , Immunization/veterinary , Adenovirus E2 Proteins/immunology , Diarrhea Viruses, Bovine Viral/drug effects , Antibodies, Neutralizing/analysis
4.
Rev Argent Microbiol ; 47(1): 4-8, 2015.
Article in English | MEDLINE | ID: mdl-25697468

ABSTRACT

Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 µg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle.


Subject(s)
Antigen-Presenting Cells/immunology , Cattle Diseases/prevention & control , Cattle Diseases/virology , Diarrhea/veterinary , Glycoproteins/immunology , Single-Chain Antibodies/immunology , Vaccines, Subunit , Animals , Cattle , Diarrhea/prevention & control , Diarrhea/virology , Guinea Pigs
5.
Rev. Argent. Microbiol. ; 47(1): 4-8, 2015 Jan-Mar.
Article in Spanish | BINACIS | ID: bin-133759

ABSTRACT

Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5Ag of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle.

SELECTION OF CITATIONS
SEARCH DETAIL
...