Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 71(6): 1993-2000, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38277250

ABSTRACT

OBJECTIVE: Deep brain stimulation (DBS) modeling can improve surgical targeting by quantifying the spatial extent of stimulation relative to subcortical structures of interest. A certain degree of model complexity is required to obtain accurate predictions, particularly complexity regarding electrical properties of the tissue around DBS electrodes. In this study, the effect of anisotropy on the volume of tissue activation (VTA) was evaluated in an individualized manner. METHODS: Tissue activation models incorporating patient-specific tissue conductivity were built for 40 Parkinson disease patients who had received bilateral subthalamic nucleus (STN) DBS. To assess the impact of local changes in tissue anisotropy, one VTA was computed at each electrode contact using identical stimulation parameters. For comparison, VTAs were also computed assuming isotropic tissue conductivity. Stimulation location was considered by classifying the anisotropic VTAs relative to the STN. VTAs were characterized based on volume, spread in three directions, sphericity, and Dice coefficient. RESULTS: Incorporating anisotropy generated significantly larger and less spherical VTAs overall. However, its effect on VTA size and shape was variable and more nuanced at the individual patient and implantation levels. Dorsal VTAs had significantly higher sphericity than ventral VTAs, suggesting more isotropic behavior. Contrastingly, lateral and posterior VTAs had significantly larger and smaller lateral-medial spreads, respectively. Volume and spread correlated negatively with sphericity. CONCLUSION: The influence of anisotropy on VTA predictions is important to consider, and varies across patients and stimulation location. SIGNIFICANCE: This study highlights the importance of considering individualized factors in DBS modeling to accurately characterize the VTA.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Humans , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Anisotropy , Male , Middle Aged , Female , Aged , Models, Neurological , Subthalamic Nucleus/physiopathology , Brain/diagnostic imaging , Brain/physiopathology , Electric Conductivity
2.
Neuromodulation ; 26(8): 1689-1698, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36470728

ABSTRACT

OBJECTIVE: Thalamic deep brain stimulation (DBS) is the primary surgical therapy for essential tremor (ET). Thalamic DBS traditionally uses an atlas-based targeting approach, which, although nominally accurate, may obscure individual anatomic differences from population norms. The objective of this study was to compare this traditional atlas-based approach with a novel quantitative modeling methodology grounded in individual tissue microstructure (N-of-1 approach). MATERIALS AND METHODS: The N-of-1 approach uses individual patient diffusion tensor imaging (DTI) data to perform thalamic segmentation and volume of tissue activation (VTA) modeling. For each patient, the thalamus was individually segmented into 13 nuclei using DTI-based k-means clustering. DBS-induced VTAs associated with tremor suppression and side effects were then computed for each patient with finite-element electric-field models incorporating DTI microstructural data. Results from N-of-1 and traditional atlas-based modeling were compared for a large cohort of patients with ET treated with thalamic DBS. RESULTS: The size and shape of individual N-of-1 thalamic nuclei and VTAs varied considerably across patients (N = 22). For both methods, tremor-improving therapeutic VTAs showed similar overlap with motor thalamic nuclei and greater motor than sensory nucleus overlap. For VTAs producing undesirable sustained paresthesia, 94% of VTAs overlapped with N-of-1 sensory thalamus estimates, whereas 74% of atlas-based segmentations overlapped. For VTAs producing dysarthria/motor contraction, the N-of-1 approach predicted greater spread beyond the thalamus into the internal capsule and adjacent structures than the atlas-based method. CONCLUSIONS: Thalamic segmentation and VTA modeling based on individual tissue microstructure explain therapeutic stimulation equally well and side effects better than a traditional atlas-based method in DBS for ET. The N-of-1 approach may be useful in DBS targeting and programming, particularly when patient neuroanatomy deviates from population norms.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Humans , Essential Tremor/diagnostic imaging , Essential Tremor/therapy , Diffusion Tensor Imaging/methods , Tremor/therapy , Deep Brain Stimulation/methods , Thalamus/diagnostic imaging , Thalamus/surgery
3.
J Neural Eng ; 19(2)2022 03 28.
Article in English | MEDLINE | ID: mdl-35272281

ABSTRACT

Objective. Choosing the optimal electrode trajectory, stimulation location, and stimulation amplitude in subthalamic nucleus deep brain stimulation (STN DBS) for Parkinson's disease remains a time-consuming empirical effort. In this retrospective study, we derive a data-driven electrophysiological biomarker that predicts clinical DBS location and parameters, and we consolidate this information into a quantitative score that may facilitate an objective approach to STN DBS surgery and programming.Approach. Random-forest feature selection was applied to a dataset of 1046 microelectrode recordings (MERs) sites across 20 DBS implant trajectories to identify features of oscillatory activity that predict clinically programmed volumes of tissue activation (VTAs). A cross-validated classifier was used to retrospectively predict VTA regions from these features. Spatial convolution of probabilistic classifier outputs along MER trajectories produced a biomarker score that reflects the probability of localization within a clinically optimized VTA.Main results. Biomarker scores peaked within the VTA region and were significantly correlated with percent improvement in postoperative motor symptoms (Part III of the Movement Disorders Society revision of the Unified Parkinson Disease Rating Scale,R= 0.61,p= 0.004). Notably, the length of STN, a common criterion for trajectory selection, did not show similar correlation (R= -0.31,p= 0.18). These findings suggest that biomarker-based trajectory selection and programming may improve motor outcomes by 9 ± 3 percentage points (p= 0.047) in this dataset.Significance. A clinically defined electrophysiological biomarker not only predicts VTA size and location but also correlates well with motor outcomes. Use of this biomarker for trajectory selection and initial stimulation may potentially simplify STN DBS surgery and programming.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Biomarkers , Deep Brain Stimulation/methods , Humans , Microelectrodes , Parkinson Disease/diagnosis , Parkinson Disease/therapy , Retrospective Studies , Treatment Outcome
4.
Neuroimage Clin ; 29: 102518, 2021.
Article in English | MEDLINE | ID: mdl-33333464

ABSTRACT

BACKGROUND: Motor outcomes after subthalamic deep brain stimulation (STN DBS) for Parkinson disease (PD) vary considerably among patients and strongly depend on stimulation location. The objective of this retrospective study was to map the regions of optimal STN DBS for PD using an atlas-independent, fully individualized (N-of-1) tissue activation modeling approach and to assess the relationship between patient-level therapeutic volumes of tissue activation (VTAs) and motor improvement. METHODS: The stimulation-induced electric field for 40 PD patients treated with bilateral STN DBS was modeled using finite element analysis. Neurostimulation models were generated for each patient, incorporating their individual STN anatomy, DBS lead position and orientation, anisotropic tissue conductivity, and clinical stimulation settings. A voxel-based analysis of the VTAs was then used to map the optimal location of stimulation. The amount of stimulation in specific regions relative to the STN was measured and compared between STNs with more and less optimal stimulation, as determined by their motor improvement scores and VTA. The relationship between VTA location and motor outcome was then assessed using correlation analysis. Patient variability in terms of STN anatomy, active contact position, and VTA location were also evaluated. Results from the N-of-1 model were compared to those from a simplified VTA model. RESULTS: Tissue activation modeling mapped the optimal location of stimulation to regions medial, posterior, and dorsal to the STN centroid. These regions extended beyond the STN boundary towards the caudal zona incerta (cZI). The location of the VTA and active contact position differed significantly between STNs with more and less optimal stimulation in the dorsal-ventral and anterior-posterior directions. Therapeutic stimulation spread noticeably more in the dorsal and posterior directions, providing additional evidence for cZI as an important DBS target. There were significant linear relationships between the amount of dorsal and posterior stimulation, as measured by the VTA, and motor improvement. These relationships were more robust than those between active contact position and motor improvement. There was high variability in STN anatomy, active contact position, and VTA location among patients. Spherical VTA modeling was unable to reproduce these results and tended to overestimate the size of the VTA. CONCLUSION: Accurate characterization of the spread of stimulation is needed to optimize STN DBS for PD. High variability in neuroanatomy, stimulation location, and motor improvement among patients highlights the need for individualized modeling techniques. The atlas-independent, N-of-1 tissue activation modeling approach presented in this study can be used to develop and evaluate stimulation strategies to improve clinical outcomes on an individual basis.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Retrospective Studies , Treatment Outcome
5.
Brain Stimul ; 13(5): 1436-1445, 2020.
Article in English | MEDLINE | ID: mdl-32712343

ABSTRACT

BACKGROUND: Novel patterns of electrical stimulation of the brain and spinal cord hold tremendous promise to improve neuromodulation therapies for diverse disorders, including tremor and pain. To date, there are limited numbers of experimental studies in human subjects to help explain how stimulation patterns impact the clinical response, especially with deep brain stimulation. We propose using novel stimulation patterns during electrical stimulation of somatosensory thalamus in awake deep brain stimulation surgeries and hypothesize that stimulation patterns will influence the sensory percept without moving the electrode. METHODS: In this study of 15 fully awake patients, the threshold of perception as well as perceptual characteristics were compared for tonic (trains of regularly-repeated pulses) and bursting stimulation patterns. RESULTS: In a majority of subjects, tonic and burst percepts were located in separate, non-overlapping body regions (i.e., face vs. hand) without moving the stimulating electrode (p < 0.001; binomial test). The qualitative features of burst percepts also differed from those of tonic-evoked percepts as burst patterns were less likely to evoke percepts described as tingling (p = 0.013; Fisher's exact test). CONCLUSIONS: Because somatosensory thalamus is somatotopically organized, percept location can be related to anatomic thalamocortical pathways. Thus, stimulation pattern may provide a mechanism to select for different thalamocortical pathways. This added control could lead to improvements in neuromodulation - such as improved efficacy and side effect attenuation - and may also improve localization for sensory prostheses.


Subject(s)
Deep Brain Stimulation/methods , Essential Tremor/physiopathology , Essential Tremor/therapy , Perception/physiology , Thalamus/physiology , Adult , Female , Humans , Male , Neural Pathways/physiology , Touch/physiology , Wakefulness/physiology
6.
Brain Stimul ; 13(2): 412-419, 2020.
Article in English | MEDLINE | ID: mdl-31866492

ABSTRACT

BACKGROUND: Subthalamic deep brain stimulation alleviates motor symptoms of Parkinson disease by activating precise volumes of neural tissue. While electrophysiological and anatomical correlates of clinically effective electrode sites have been described, therapeutic stimulation likely acts through multiple distinct neural populations, necessitating characterization of the full span of tissue activation. Microelectrode recordings have yet to be mapped to therapeutic tissue activation volumes and surveyed for predictive markers. OBJECTIVE: Combine high-density, broadband microelectrode recordings with detailed computational models of tissue activation to describe and to predict regions of therapeutic tissue activation. METHODS: Electrophysiological features were extracted from microelectrode recordings along 23 subthalamic deep brain stimulation implants in 16 Parkinson disease patients. These features were mapped in space against tissue activation volumes of therapeutic stimulation, modeled using clinically-determined stimulation programming parameters and fully individualized, atlas-independent anisotropic tissue properties derived from 3T diffusion tensor magnetic resonance images. Logistic LASSO was applied to a training set of 17 implants out of the 23 implants to identify predictors of therapeutic stimulation sites in the microelectrode recording. A support vector machine using these predictors was used to predict therapeutic activation. Performance was validated with a test set of six implants. RESULTS: Analysis revealed wide variations in the distribution of therapeutic tissue activation across the microelectrode recording-defined subthalamic nucleus. Logistic LASSO applied to the training set identified six oscillatory predictors of therapeutic tissue activation: theta, alpha, beta, high gamma, high frequency oscillations (HFO, 200-400 Hz), and high frequency band (HFB, 500-2000 Hz), in addition to interaction terms: theta x HFB, alpha x beta, beta x HFB, and high gamma x HFO. A support vector classifier using these features predicted therapeutic sites of activation with 64% sensitivity and 82% specificity in the test set, outperforming a beta-only classifier. A probabilistic predictor achieved 0.87 area under the receiver-operator curve with test data. CONCLUSIONS: Together, these results demonstrate the importance of personalized targeting and validate a set of microelectrode recording signatures to predict therapeutic activation volumes. These features may be used to improve the efficiency of deep brain stimulation programming and highlight specific neural oscillations of physiological importance.


Subject(s)
Deep Brain Stimulation/methods , Electroencephalography/methods , Parkinson Disease/therapy , Subthalamic Nucleus/physiopathology , Adult , Aged , Deep Brain Stimulation/instrumentation , Female , Humans , Male , Microelectrodes , Middle Aged , Parkinson Disease/physiopathology , Support Vector Machine
7.
J Neural Eng ; 13(1): 016010, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26655972

ABSTRACT

OBJECTIVE: We characterized electrode stability over twelve weeks of impedance and neural recording data from four chronically-implanted Utah arrays in two rhesus macaques, and investigated the effects of glial scarring and interface interactions at the electrode recording site on signal quality using a computational model. APPROACH: A finite-element model of a Utah array microelectrode in neural tissue was coupled with a multi-compartmental model of a neuron to quantify the effects of encapsulation thickness, encapsulation resistivity, and interface resistivity on electrode impedance and waveform amplitude. The coupled model was then reconciled with the in vivo data. Histology was obtained seventeen weeks post-implantation to measure gliosis. MAIN RESULTS: From week 1-3, mean impedance and amplitude increased at rates of 115.8 kΩ/week and 23.1 µV/week, respectively. This initial ramp up in impedance and amplitude was observed across all arrays, and is consistent with biofouling (increasing interface resistivity) and edema clearing (increasing tissue resistivity), respectively, in the model. Beyond week 3, the trends leveled out. Histology showed that thin scars formed around the electrodes. In the model, scarring could not match the in vivo data. However, a thin interface layer at the electrode tip could. Despite having a large effect on impedance, interface resistivity did not have a noticeable effect on amplitude. SIGNIFICANCE: This study suggests that scarring does not cause an electrical problem with regard to signal quality since it does not appear to be the main contributor to increasing impedance or significantly affect amplitude unless it displaces neurons. This, in turn, suggests that neural signals can be obtained reliably despite scarring as long as the recording site has sufficiently low impedance after accumulating a thin layer of biofouling. Therefore, advancements in microelectrode technology may be expedited by focusing on improvements to the recording site-tissue interface rather than elimination of the glial scar.


Subject(s)
Diagnostic Techniques, Neurological/adverse effects , Electrodes, Implanted/adverse effects , Gliosis/etiology , Gliosis/pathology , Motor Cortex/pathology , Motor Cortex/physiopathology , Animals , Computer Simulation , Electric Impedance , Equipment Design , Equipment Failure Analysis , Humans , Macaca mulatta , Microelectrodes/adverse effects , Models, Neurological , Motor Cortex/surgery , Reproducibility of Results , Sensitivity and Specificity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...