Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(28): e2403635121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38950371

ABSTRACT

While the intracellular-extracellular distribution of lactate has been suggested to play a critical role in the healthy and diseased brain, tools are lacking to noninvasively probe lactate in intracellular and extracellular spaces. Here, we show that, by measuring the diffusion of lactate with diffusion-weighted magnetic resonance (MR) spectroscopy in vivo and comparing it to the diffusion of purely intracellular metabolites, noninvasive quantification of extracellular and intracellular lactate fractions becomes possible. More specifically, we detect alterations of lactate diffusion in the APP/PS1 mouse model of Alzheimer's disease. Data modeling allows quantifying decreased extracellular lactate fraction in APP/PS1 mice as compared to controls, which is quantitatively confirmed with implanted enzyme-microelectrodes. The capability of diffusion-weighted MR spectroscopy to quantify extracellular-intracellular lactate fractions opens a window into brain metabolism, including in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Brain , Lactic Acid , Animals , Lactic Acid/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Brain/metabolism , Brain/diagnostic imaging , Mice , Mice, Transgenic , Diffusion Magnetic Resonance Imaging/methods , Extracellular Space/metabolism , Disease Models, Animal , Magnetic Resonance Spectroscopy/methods , Male , Amyloid beta-Protein Precursor/metabolism
2.
Magn Reson Med ; 88(5): 2277-2284, 2022 11.
Article in English | MEDLINE | ID: mdl-35906915

ABSTRACT

PURPOSE: While diffusion and T2 relaxation are intertwined, little or no correlation exists between diffusion and T2 relaxation of intracellular metabolites in the rodent brain, as measured by diffusion-weighted MRS at different TEs. However, situation might be different for lactate, since it is present in both extracellular and intracellular spaces, which exhibit different diffusion properties and may also exhibit different T2 . Such a TE dependence would be crucial to account for when interpreting or modeling lactate diffusion. Here we propose to take advantage of a new diffusion sequence, where J-modulation of lactate is canceled even at long TE, thus retaining excellent signal, to assess potential T2 dependence on diffusion of lactate in the mouse brain. METHODS: Using a frequency-selective diffusion-weighted spin-echo sequence that removes J-modulation at 1.3 ppm, thus preserving lactate signal even at long TE, we investigate the effect of TE between 50.9 and 110.9 ms (while keeping diffusion time constant) on apparent diffusivity and kurtosis in the mouse brain. RESULTS: Regardless of the metabolites, no difference appears for the diffusion-weighted signal attenuation with increasing TE. For lactate, apparent diffusivity and kurtosis remain unchanged as TE increases. CONCLUSION: No significant TE dependence of diffusivity and kurtosis is measured for lactate in the 50-110 ms TE range, confirming that potential T2 effects can be ignored when interpreting or modeling lactate diffusion.


Subject(s)
Diffusion Magnetic Resonance Imaging , Lactic Acid , Animals , Brain/diagnostic imaging , Brain/metabolism , Diffusion , Lactic Acid/metabolism , Mice
3.
J Magn Reson ; 334: 107113, 2022 01.
Article in English | MEDLINE | ID: mdl-34872032

ABSTRACT

Measurement of lactate diffusion properties using diffusion-weighted magnetic resonance spectroscopy in vivo may allow elucidating brain lactate cellular compartmentation, which would be of great importance for neuroscience. However, measuring lactate signal is complicated by low signal-to-noise ratio due to low lactate concentration and J-modulation of its 1.3 ppm peak. In this work, we assess the benefits of using a diffusion-weighting spin echo block and spectrally selective refocusing pulses to suppress the effect of J-coupling on the 1.3 ppm lactate resonance, by not refocusing its coupling partner at 4.1 ppm. Two different kinds of spectrally selective pulses, either polychromatic or single-band, are evaluated in the mouse brain at 11.7 T. Almost complete suppression of J-modulation is shown, resulting in an approximately two-fold signal increase as compared to a reference STE-LASER sequence (for the specific diffusion times used in this work). Repeated measurements confirm that lactate diffusion-weighted signal attenuation is measured with an approximately two-fold precision.


Subject(s)
Lactic Acid , Magnetic Resonance Imaging , Animals , Diffusion , Magnetic Resonance Spectroscopy , Mice , Radio Waves
4.
Biophys J ; 120(3): 402-408, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33421413

ABSTRACT

Because of their role of information transmitter between the spinal cord and the muscle fibers, motor neurons are subject to physical stimulation and mechanical property modifications. We report on motoneuron elasticity investigated by time-resolved pump and probe spectroscopy. A dual picosecond geometry simultaneously probing the acoustic impedance mismatch at the cell-titanium transducer interface and acoustic wave propagation inside the motoneuron is presented. Such noncontact and nondestructive microscopy, correlated to standard atomic force microscopy or a fluorescent labels approach, has been carried out on a single cell to address some physical properties such as bulk modulus of elasticity, dynamical longitudinal viscosity, and adhesion.


Subject(s)
Motor Neurons , Elasticity , Microscopy, Atomic Force , Spectrum Analysis , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL