Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 57(48): 20228-20237, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37935215

ABSTRACT

Treated wastewater is an important source of water for irrigation. As a result, irrigated crops are chronically exposed to wastewater-derived pharmaceuticals, such as the anticonvulsant drug lamotrigine. Lamotrigine is known to be taken up by plants, but its plant-derived metabolites and their distribution in different plant organs are unknown. This study aimed to detect and identify metabolites of lamotrigine in cucumber plants grown for 35 days in a hydroponic solution by using LC-MS/MS (Orbitrap) analysis. Our data showed that 96% of the lamotrigine taken up was metabolized. Sixteen metabolites possessing a lamotrigine core structure were detected. Reference standards confirmed two; five were tentatively identified, and nine molecular formulas were assigned. The data suggest that lamotrigine is metabolized via N-carbamylation, N-glucosidation, N-alkylation, N-formylation, N-oxidation, and amidine hydrolysis. The metabolites LTG-N2-oxide, M284, M312, and M370 were most likely produced in the roots and were translocated to the leaves. Metabolites M272, M312, M314, M354, M368, M370, and M418 were dominant in leaves. Only a few metabolites were detected in the fruits. With an increasing exposure time, lamotrigine leaf concentrations decreased because of continuous metabolism. Our data showed that the metabolism of lamotrigine in a plant is fast and that a majority of metabolites are concentrated in the roots and leaves.


Subject(s)
Anticonvulsants , Cucumis sativus , Anticonvulsants/analysis , Anticonvulsants/metabolism , Lamotrigine/analysis , Lamotrigine/metabolism , Cucumis sativus/metabolism , Wastewater , Chromatography, Liquid , Tandem Mass Spectrometry
2.
Environ Sci Technol ; 53(24): 14083-14090, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31725273

ABSTRACT

Irrigation with treated wastewater (TWW) and application of biosolids introduce numerous pharmaceutical and personal care products (PPCPs) into agro-food systems. While the use of TWW and biosolids has many societal benefits, introduction of PPCPs in production agriculture poses potential food safety and human health risks. A comprehensive risk assessment and management scheme of PPCPs in agro-food systems is limited by multiple factors, not least the sheer number of investigated compounds and their diverse structures. Here we follow the fate of PPCPs in the water-soil-produce continuum by considering processes and variables that influence PPCP transfer and accumulation. By analyzing the steps in the soil-plant-human diet nexus, we propose a tiered framework as a path forward to prioritize PPCPs that could have a high potential for plant accumulation and thus pose greatest risk. This article examines research progress to date and current research challenges, highlighting the potential value of leveraging existing knowledge from decades of research on other chemicals such as pesticides. A process-driven scheme is outlined to derive a short list that may be used to refocus our future research efforts on PPCPs and other analogous emerging contaminants in agro-food systems.


Subject(s)
Cosmetics , Pharmaceutical Preparations , Soil Pollutants , Water Pollutants, Chemical , Agriculture , Humans , Soil , Wastewater
3.
Environ Sci Technol ; 52(12): 6957-6964, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29787250

ABSTRACT

Carbamazepine and lamotrigine prescribed antiepileptic drugs are highly persistent in the environment and were detected in crops irrigated with reclaimed wastewater. This study reports pharmacokinetics of the two drugs and their metabolites in cucumber plants under hydroponic culture, testing their uptake, translocation, and transformation over 96 h in single and bisolute systems at varying pH. Ruling out root adsorption and transformations in the nutrient solution, we demonstrate that carbamazepine root uptake is largely affected by the concentration gradient across the membrane. Unlike carbamazepine, lamotrigine is adsorbed to the root and undergoes ion trapping in root cells thus its translocation to the shoots is limited. On the basis of that, carbamazepine uptake was not affected by the presence of lamotrigine, while lamotrigine uptake was enhanced in the presence of carbamazepine. Transformation of carbamazepine in the roots was slightly reduced in the presence of lamotrigine. Carbamazepine metabolism was far more pronounced in the shoots than in the roots, indicating that most of the metabolism occurs in the leaves, probably due to higher concentration and longer residence time. This study indicates that the uptake of small nonionic pharmaceuticals is passive and governed by diffusion across the root membrane.


Subject(s)
Anticonvulsants , Lamotrigine , Carbamazepine , Hydroponics , Triazines , Wastewater
4.
Chemosphere ; 160: 22-9, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27351902

ABSTRACT

Irrigation with reclaimed wastewater may result in the ubiquitous presence of pharmaceutical compounds (PCs) and their metabolites in the agroecosystem. In this study, we focused on two highly persistent anticonvulsant drugs, lamotrigine and carbamazepine and two of its metabolites (EP-CBZ and DiOH-CBZ), aiming to elucidate their behavior in agricultural ecosystem using batch and lysimeter experiments. Sorption of the studied compounds by soils was found to be governed mainly by the soil organic matter level. Sorption affinity of compounds to soils followed the order lamotrigine > carbamazepine > EP-CBZ > DiOH-CBZ. Sorption was reversible, and no competition between sorbates in bi-solute systems was observed. The results of the lysimeter studies were in accordance with batch experiment findings, demonstrating accumulation of lamotrigine and carbamazepine in top soil layers enriched with organic matter. Detection of carbamazepine and one of its metabolites in rain-fed wheat previously irrigated with reclaimed wastewater, indicates reversibility of their sorption, resulting in their potential leaching and their availability for plant uptake. This study demonstrates the long-term implication of introduction of PCs to the agroecosystem.


Subject(s)
Agricultural Irrigation/methods , Anticonvulsants/analysis , Carbamazepine/analysis , Soil Pollutants/analysis , Triazines/analysis , Triticum/metabolism , Adsorption , Anticonvulsants/chemistry , Anticonvulsants/metabolism , Carbamazepine/chemistry , Carbamazepine/metabolism , Environmental Monitoring , Lamotrigine , Rain , Recycling , Soil Pollutants/chemistry , Soil Pollutants/metabolism , Triazines/chemistry , Triazines/metabolism , Wastewater
6.
Environ Sci Technol ; 48(16): 9325-33, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25026038

ABSTRACT

To meet mounting water demands, treated wastewater has become an important source of irrigation. Thus, contamination of treated wastewater by pharmaceutical compounds (PCs) and the fate of these compounds in the agricultural environment are of increasing concern. This field study aimed to quantify PC uptake by treated wastewater-irrigated root crops (carrots and sweet potatoes) grown in lysimeters and to evaluate potential risks. In both crops, the nonionic PCs (carbamazepine, caffeine, and lamotrigine) were detected at significantly higher concentrations than ionic PCs (metoprolol, bezafibrate, clofibric acid, diclofenac, gemfibrozil, ibuprofen, ketoprofen, naproxen, sulfamethoxazole, and sildenafil). PCs in leaves were found at higher concentrations than in the roots. Carbamazepine metabolites were found mainly in the leaves, where the concentration of the metabolite 10,11-epoxycarbamazepine was significantly higher than the parent compound. The health risk associated with consumption of wastewater-irrigated root vegetables was estimated using the threshold of toxicological concern (TTC) approach. Our data show that the TTC value of lamotrigine can be reached for a child at a daily consumption of half a carrot (∼60 g). This study highlights that certain PCs accumulated in edible organs at concentrations above the TTC value should be categorized as contaminants of emerging concern.


Subject(s)
Agricultural Irrigation/methods , Pharmaceutical Preparations/analysis , Vegetables/growth & development , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Humans , Pharmaceutical Preparations/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Public Health , Risk , Vegetables/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...