Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Quant Imaging Med Surg ; 10(8): 1723-1738, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32742963

ABSTRACT

Body composition assessment (BCA) represents a valid instrument to evaluate nutritional status through the quantification of lean and fat tissue, in healthy subjects and sick patients. According to the clinical indication, body composition (BC) can be assessed by different modalities. To better analyze radiation risks for patients involved, BCA procedures can be divided into two main groups: the first based on the use of ionizing radiation (IR), involving dual energy X-ray absorptiometry (DXA) and computed tomography (CT), and others based on non-ionizing radiation (NIR) [magnetic resonance imaging (MRI)]. Ultrasound (US) techniques using mechanical waves represent a separate group. The purpose of our study was to analyze publications about IR and NIR effects in order to make physicians aware about the risks for patients undergoing medical procedures to assess BCA providing to guide them towards choosing the most suitable method. To this end we reported the biological effects of IR and NIR and their associated risks, with a special regard to the excess risk of death from radio-induced cancer. Furthermore, we reported and compared doses obtained from different IR techniques, giving practical indications on the optimization process. We also summarized current recommendations and limits for techniques employing NIR and US. The authors conclude that IR imaging procedures carry relatively small individual risks that are usually justified by the medical need of patients, especially when the optimization principle is applied. As regards NIR imaging procedures, a few studies have been conducted on interactions between electromagnetic fields involved in MR exam and biological tissue. To date, no clear link exists between MRI or associated magnetic and pulsed radio frequency (RF) fields and subsequent health risks, whereas acute effects such as tissue burns and phosphenes are well-known; as regards the DNA damage and the capability of NIR to break chemical bonds, they are not yet robustly demonstrated. MRI is thus considered to be very safe for BCA as well US procedures.

2.
Radiol Med ; 124(8): 783-793, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30972532

ABSTRACT

AIMS AND OBJECTIVES: The aim of this study was to properly define the information regarding patient exposure to Ionizing Radiations in the radiological report, according to the European Directive 2013/59/EURATOM (EU 2013/59 art.58(b)). For this purpose, we evaluated the results from other Member States EU 2013/59 transpositions and from Guidelines recommendation published by International Organizations involved in diagnostic radiology. A practical way for implementing art.58 is also traced. MATERIALS AND METHODS: Dosimetric quantities, such as exposure, absorbed dose and effective dose which may be included in radiological report, were first analyzed; then, in order to define international state of art of Member States EU 2013/59 transposition, a Web research using French, English, Spanish and German key words was performed. RESULTS: EU 2013/59 transposition for 5 Member States was reported. Especially regarding art.58, a European project reports that few European countries (11 of 28) have identified the dose metrics to be used in radiological report. Scientific organizations supporting clinical radiologists and medical physicists have published Guidelines reporting parameters useful to quantify the radiation output and to assess patient dose. CONCLUSIONS: Our research revealed that there is not a shared interpretation of patient exposure information to be included in radiological report. Nevertheless, according to scientific community, authors believe that the exposure is the most appropriate information that could be included in radiological report. Alternatively, but with more expensiveness, a risk index based on effective dose could be used. Moreover, the systematic exposure information recorded could be useful for dose estimates of population from medical exposure.


Subject(s)
Medical Records/legislation & jurisprudence , Patient Education as Topic/legislation & jurisprudence , Radiation Dosage , Radiation Exposure/legislation & jurisprudence , Radiology/legislation & jurisprudence , Risk Management/legislation & jurisprudence , Adult , Age Factors , Child , European Union , Humans , Radiation, Ionizing , Radiometry , Reference Values , Relative Biological Effectiveness
3.
Phys Med ; 59: 47-54, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30928065

ABSTRACT

PURPOSE: When a lung lesion is detected by only one couple of X-ray tube and image detector integrated with CyberKnife®, the fiducial-less tracking is limited to 1-view (34% of lung treatments at Centro Diagnostico Italiano). The aim of the study was mainly to determine the margin needed to take into account the localization uncertainty along the blind view (out-of-plane direction). METHODS: 36 patients treated in 2-view tracking modality (127 fractions in total) were included in the study. The actual tumor positions were determined retrospectively through logfile analysis and were projected onto 2D image planes. In the same plots the planned target positions based on biphasic breath-hold CT scans were represented preserving the metric with respect to the imaging center. The internal margin necessary to cover in out-of-plane direction the 95% of the target position distribution in the 95% of cases was calculated by home-made software in Matlab®. A validation test was preliminarily performed using XLT Phantom (CIRS) both in 2-view and 1-view scenarios. RESULTS: The validation test proved the reliability of the method, in spite of some intrinsic limitations. Margins were estimated equal to 5 and 6 mm for targets in upper and lower lobe respectively. Biphasic breath-hold CT led to underestimate the target movement in the hypothetical out-of-plane direction. The inter-fractional variability of spine-target distance was an important source of uncertainty for 1-view treatments. CONCLUSION: This graphic comparison method preserving metric could be employed in the clinical workflow of 1-view treatments to get patient-related information for customized margin definition.


Subject(s)
Lung Neoplasms/radiotherapy , Radiosurgery , Robotic Surgical Procedures , Breath Holding , Dose Fractionation, Radiation , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/physiopathology , Phantoms, Imaging , Retrospective Studies , Tomography, X-Ray Computed , Uncertainty
4.
Radiol Med ; 124(8): 728-735, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30919221

ABSTRACT

AIM AND OBJECTIVES: The aim of this article was to explore the implications of the new Euratom dose limit for occupational radiation protection in the context of medical occupational radiation exposures. The European Directive 2013/59/Euratom takes into account the new recommendations on reduction in the dose limit for the lens of the eye for planned occupational exposures released in 2012 by the International Commission on Radiological Protection (ICRP 118). MATERIALS AND METHODS: Different dose-monitoring procedures and devices were considered. Occupational eye lens doses reported by previous studies were analyzed, mainly considering workers involved in interventional procedures with X-rays. The current status of eye lens radiation protection and the main methods for dose reduction were investigated. RESULTS: The analysis showed that the workers, potentially exceeding the new limit, are clinical staff performing interventional procedures with a relatively high X-ray dose. Regarding radiological protection issues, the considered literature reports that the proper use of personal protective equipment may reduce the eye lens absorbed dose. CONCLUSION: The evaluation of the occupational eye lens dose is essential to establish which method of personal dose monitoring should be preferred. Furthermore, education and training about the right use of personal protective equipment are important for medical staff working with ionizing radiation.


Subject(s)
Lens, Crystalline/radiation effects , Occupational Exposure/legislation & jurisprudence , Radiation Dosage , Radiation Exposure/legislation & jurisprudence , Radiation Monitoring/legislation & jurisprudence , Radiation Protection/legislation & jurisprudence , European Union , Humans , Maximum Allowable Concentration , Occupational Exposure/prevention & control , Occupational Exposure/standards , Personal Protective Equipment/standards , Radiation Exposure/prevention & control , Radiation Exposure/standards , Radiation Monitoring/instrumentation , Radiation Protection/standards , Radiation, Ionizing
SELECTION OF CITATIONS
SEARCH DETAIL
...