Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Curr Opin Pharmacol ; 75: 102439, 2024 04.
Article in English | MEDLINE | ID: mdl-38447458

ABSTRACT

To develop effective therapies for complex blinding diseases such as age-related macular degeneration (AMD), identification of mechanisms involved in its initiation and progression is needed. The estrogen-related receptor alpha (ESRRA) is an orphan nuclear receptor that regulates several AMD-associated pathogenic pathways. However, it has not been investigated in detail in the ocular posterior pole during aging or in AMD. This review delves into the literature highlighting the significance of ESRRA as a molecular target that may be important in the pathobiology of AMD, and discusses data available supporting the targeting of this receptor signaling pathway as a therapeutic option for AMD.


Subject(s)
ERRalpha Estrogen-Related Receptor , Macular Degeneration , Humans , Macular Degeneration/drug therapy , Macular Degeneration/metabolism , Macular Degeneration/pathology , Aging/physiology , Receptors, Cytoplasmic and Nuclear , Eye/metabolism
2.
Adv Exp Med Biol ; 1415: 207-213, 2023.
Article in English | MEDLINE | ID: mdl-37440035

ABSTRACT

Age-related macular degeneration (AMD) is the leading cause of visual impairment in the elderly in developed countries. It is a complex, multifactorial, progressive disease with diverse molecular pathways, including inflammation, regulating its pathogenesis. The myeloid marker CD68 is a protein highly expressed in circulating and tissue macrophages. Recent observations of immune markers in human AMD tissues have varied with some finding ectopic RPE cells in advanced AMD and others noting negligible numbers of CD68-positive cells. Additionally, animal models of retinal degeneration have shown upregulation of CD68, in a protective population of retinal microglia. Herein, we review the potential role of CD68 in regulating RPE health and inflammation in the sub-retinal space and discuss observations on its localization in a mouse model that presents with AMD-like features.


Subject(s)
Macular Degeneration , Retinal Degeneration , Mice , Animals , Humans , Aged , Retinal Pigment Epithelium/pathology , Retina/pathology , Macular Degeneration/pathology , Retinal Degeneration/pathology , Inflammation/metabolism
4.
J Ocul Pharmacol Ther ; 39(4): 290-299, 2023 05.
Article in English | MEDLINE | ID: mdl-36944130

ABSTRACT

Purpose: Angiotensin-(1-12) [Ang-(1-12)] serves as a primary substrate to generate angiotensin II (Ang II) by angiotensin-converting enzyme and/or chymase suggests it may be an unrecognized source of Ang II-mediated microvascular complication in hypertension-mediated retinopathy. We investigated Ang-(1-12) expression and internalization in adult retinal pigment epithelial-19 (ARPE-19) cultured cells. We performed the internalization of Ang-(1-12) in ARPE-19 cells in the presence of a highly specific monoclonal antibody (mAb) developed against the C-terminal end of the Ang-(1-12) sequence. Methods: All experiments were performed in confluent ARPE-19 cells (passage 28-35). We employed high-performance liquid chromatography to purify radiolabeled, 125I-Ang-(1-12) and immuno-neutralization with Ang-(1-12) mAb to demonstrate Ang-(1-12)'s internalization in ARPE-19 cells. Internalization was also demonstrated by immunofluorescence (IF) method. Results: These procedures revealed internalization of an intact 125I-Ang-(1-12) in ARPE-19 cells. A significant reduction (∼53%, P < 0.0001) in 125I-Ang-(1-12) internalization was detected in APRE-19 cells in the presence of the mAb. IF staining experiments further confirms internalization of Ang-(1-12) into the cells from the extracellular culture medium. No endogenous expression was detected in the ARPE-19 cells. An increased intensity of IF staining was detected in cells exposed to 1.0 µM Ang-(1-12) compared with 0.1 µM. Furthermore, we found hydrolysis of Ang-(1-12) into Ang II by ARPE-19 cells' plasma membranes. Conclusions: Intact Ang-(1-12) peptide is internalized from the extracellular spaces in ARPE-19 cells and metabolized into Ang II. The finding that a selective mAb blocks cellular internalization of Ang-(1-12) suggests alternate therapeutic approaches to prevent/reduce the RPE cells Ang II burden.


Subject(s)
Angiotensin II , Iodine Radioisotopes , Angiotensin II/pharmacology , Angiotensin II/metabolism , Retinal Pigments , Cells, Cultured
5.
Prog Retin Eye Res ; 94: 101130, 2023 05.
Article in English | MEDLINE | ID: mdl-36220751

ABSTRACT

The functions and activities of nuclear receptors, the largest family of transcription factors in the human genome, have classically focused on their ability to act as steroid and hormone sensors in endocrine organs. However, they are responsible for a diverse array of physiological functions, including cellular homeostasis and metabolism, during development and aging. Though the eye is not a traditional endocrine organ, recent studies have revealed high expression levels of nuclear receptors in cells throughout the posterior pole. These findings have precipitated an interest in investigating the role of these transcription factors in the eye as a function of age and ocular disease, in particular age-related macular degeneration (AMD). As the leading cause of vision impairment in the elderly, identifying signaling pathways that may be targeted for AMD therapy is of great importance, given the lack of therapeutic options for over 85% of patients with this disease. Herein we review this relatively new field and recent findings supporting the hypothesis that the eye is a secondary endocrine organ, in which nuclear receptors serve as the bedrock for biological processes in cells vulnerable in AMD, including retinal pigment epithelial and choroidal endothelial cells, and discuss the therapeutic potential of targeting these receptors for AMD.


Subject(s)
Endothelial Cells , Macular Degeneration , Humans , Aged , Endothelial Cells/metabolism , Macular Degeneration/genetics , Aging/physiology , Transcription Factors/metabolism , Transcription Factors/therapeutic use , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/therapeutic use , Retinal Pigment Epithelium/metabolism
6.
Front Ophthalmol (Lausanne) ; 3: 1237788, 2023.
Article in English | MEDLINE | ID: mdl-38983024

ABSTRACT

Adult-onset foveomacular dystrophy (AOFVD) is a retinal pattern dystrophy that may affect up to 1 in 7,400 individuals. There is much that is unknown regarding this disease's epidemiology, risk factors for development, and rate of progression through its four stages. Advancements in retinal imaging over the past 15 years have enabled improved characterization of the different stages of AOFVD. These imaging advancements also offer new ways of differentiating AOFVD from phenotypically similar retinal diseases like age-related macular degeneration and Best disease. This review synthesizes the most recent discoveries regarding imaging correlates within AOFVD as well as risk factors for the development of AOFVD, complications of AOFVD, and treatment options. Our aim is to provide ophthalmologists a succinct resource so that they may offer clarity, guidance, and appropriate monitoring and treatments for their patients with suspected AOFVD.

8.
Exp Eye Res ; 225: 109254, 2022 12.
Article in English | MEDLINE | ID: mdl-36150544

ABSTRACT

Advanced age is the most established risk factor for developing age-related macular degeneration (AMD), one of the leading causes of visual impairment in the elderly, in Western and developed countries. Similarly, after middle age, there is an exponential increase in pathologic molecular and cellular events that can induce senescence, traditionally defined as an irreversible loss of the cells' ability to divide and most recently reported to also occur in select post-mitotic and terminally differentiated cells, such as neurons. Together these facts raise the question as to whether or not cellular senescence, may play a role in the development of AMD. A number of studies have reported the effect of ocular-relevant inducers of senescence using primarily in vitro models of poorly polarized, actively dividing retinal pigment epithelial (RPE) cell lines. However, in interpretating the data, the fidelity of these culture models to the RPE in vivo, must be considered. Fewer studies have explored the presence and/or impact of senescent cells in in vivo models that present with phenotypic features of AMD, leaving this an open field for further investigation. The goal of this review is to discuss current thoughts on the potential role of senescence in AMD development and progression, with consideration of the model systems used and their relevance to human disease.


Subject(s)
Macular Degeneration , Retinal Pigment Epithelium , Middle Aged , Humans , Aged , Retinal Pigment Epithelium/metabolism , Macular Degeneration/metabolism , Cellular Senescence
9.
Cells ; 11(15)2022 08 02.
Article in English | MEDLINE | ID: mdl-35954227

ABSTRACT

The choroid is a vulnerable tissue site in the eye, impacted in several blinding diseases including age related macular degeneration (AMD), which is the leading cause of central vision loss in the aging population. Choroidal thinning and choriocapillary dropout are features of the early form of AMD, and endothelial dysfunction and vascular changes are primary characteristics of the neovascular clinical sub-type of AMD. Given the importance, the choroidal endothelium and outer vasculature play in supporting visual function, a better understanding of baseline choroidal signaling pathways engaged in tissue and cellular homeostasis is needed. Nuclear receptors are a large family of transcription factors responsible for maintaining various cellular processes during development, aging and disease. Herein we developed a comprehensive nuclear receptor atlas of human choroidal endothelial cells and freshly isolated choroidal tissue by examining the expression levels of all members of this transcription family using quantitative real time PCR. Given the close relationship between the choroid and retinal pigment epithelium (RPE), this data was cross-referenced with the expression profile of nuclear receptors in human RPE cells, to discover potential overlap versus cell-specific nuclear receptor expression. Finally, to identify candidate receptors that may participate in the pathobiology of AMD, we cataloged nuclear receptor expression in a murine model of wet AMD, from which we discovered a subset of nuclear receptors differentially regulated following neovascularization. Overall, these databases serve as useful resources establishing the influence of nuclear receptor signaling pathways on the outer vascular tissue of the eye, while providing a list of receptors, for more focused investigations in the future, to determine their suitability as potential therapeutic targets for diseases, in which the choroid is affected.


Subject(s)
Endothelial Cells , Macular Degeneration , Aged , Animals , Choroid/metabolism , Endothelial Cells/metabolism , Humans , Macular Degeneration/genetics , Macular Degeneration/metabolism , Mice , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Retinal Pigment Epithelium/metabolism
10.
Exp Eye Res ; 222: 109170, 2022 09.
Article in English | MEDLINE | ID: mdl-35835183

ABSTRACT

Age-related macular degeneration (AMD) is a disease that affects the macula - the central part of the retina. It is a leading cause of irreversible vision loss in the elderly. AMD onset is marked by the presence of lipid- and protein-rich extracellular deposits beneath the retinal pigment epithelium (RPE), a monolayer of polarized, pigmented epithelial cells located between the photoreceptors and the choroidal blood supply. Progression of AMD to the late nonexudative "dry" stage of AMD, also called geographic atrophy, is linked to progressive loss of areas of the RPE, photoreceptors, and underlying choriocapillaris leading to a severe decline in patients' vision. Differential susceptibility of macular RPE in AMD and the lack of an anatomical macula in most lab animal models has promoted the use of in vitro models of the RPE. In addition, the need for high throughput platforms to test potential therapies has driven the creation and characterization of in vitro model systems that recapitulate morphologic and functional abnormalities associated with human AMD. These models range from spontaneously formed cell line ARPE19, immortalized cell lines such as hTERT-RPE1, RPE-J, and D407, to primary human (fetal or adult) or animal (mouse and pig) RPE cells, and embryonic and induced pluripotent stem cell (iPSC) derived RPE. Hallmark RPE phenotypes, such as cobblestone morphology, pigmentation, and polarization, vary significantly betweendifferent models and culture conditions used in different labs, which would directly impact their usability for investigating different aspects of AMD biology. Here the AMD Disease Models task group of the Ryan Initiative for Macular Research (RIMR) provides a summary of several currently used in vitro RPE models, historical aspects of their development, RPE phenotypes that are attainable in these models, their ability to model different aspects of AMD pathophysiology, and pros/cons for their use in the RPE and AMD fields. In addition, due to the burgeoning use of iPSC derived RPE cells, the critical need for developing standards for differentiating and rigorously characterizing RPE cell appearance, morphology, and function are discussed.


Subject(s)
Geographic Atrophy , Induced Pluripotent Stem Cells , Macular Degeneration , Adult , Aged , Animals , Cell Culture Techniques , Geographic Atrophy/pathology , Humans , Induced Pluripotent Stem Cells/metabolism , Macular Degeneration/metabolism , Mice , Retinal Pigment Epithelium/metabolism , Swine
11.
Proc Natl Acad Sci U S A ; 119(28): e2202256119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35867766

ABSTRACT

Phenotypic variations in the retinal pigment epithelial (RPE) layer are often a predecessor and driver of ocular degenerative diseases, such as age-related macular degeneration (AMD), the leading cause of vision loss in the elderly. We previously identified the orphan nuclear receptor-related 1 (NURR1), from a nuclear receptor atlas of human RPE cells, as a candidate transcription factor potentially involved in AMD development and progression. In the present study we characterized the expression of NURR1 as a function of age in RPE cells harvested from human donor eyes and in donor tissue from AMD patients. Mechanistically, we found an age-dependent shift in NURR1 dimerization from NURR1-RXRα heterodimers toward NURR1-NURR1 homodimers in primary human RPE cells. Additionally, overexpression and activation of NURR1 attenuated TNF-α-induced epithelial-to-mesenchymal transition (EMT) and migration, and modulated EMT-associated gene and protein expression in human RPE cells independent of age. In vivo, oral administration of IP7e, a potent NURR1 activator, ameliorated EMT in an experimental model of wet AMD and improved retinal function in a mouse model that presents with dry AMD features, impacting AMD phenotype, structure, and function of RPE cells, inhibiting accumulation of immune cells, and diminishing lipid accumulation. These results provide insight into the mechanisms of action of NURR1 in the aging eye, and demonstrate that the relative expression levels and activity of NURR1 is critical for both physiological and pathological functions of human RPE cells through RXRα-dependent regulation, and that targeting NURR1 may have therapeutic potential for AMD by modulating EMT, inflammation, and lipid homeostasis.


Subject(s)
Epithelial-Mesenchymal Transition , Macular Degeneration , Nuclear Receptor Subfamily 4, Group A, Member 2 , Retinal Pigment Epithelium , Aged , Animals , Humans , Lipids , Macular Degeneration/metabolism , Macular Degeneration/pathology , Mice , Nuclear Receptor Subfamily 4, Group A, Member 2/chemistry , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Phenotype , Protein Multimerization , Retinal Pigment Epithelium/metabolism
13.
Lab Invest ; 102(10): 1132-1142, 2022 10.
Article in English | MEDLINE | ID: mdl-35589984

ABSTRACT

Apolipoprotein B100 (apoB100) is the structural protein of cholesterol carriers including low-density lipoproteins. It is a constituent of sub-retinal pigment epithelial (sub-RPE) deposits and pro-atherogenic plaques, hallmarks of early dry age-related macular degeneration (AMD), an ocular neurodegenerative blinding disease, and cardiovascular disease, respectively. Herein, we characterized the retinal pathology of transgenic mice expressing mouse apoB100 in order to catalog their functional and morphological ocular phenotypes as a function of age and establish measurable endpoints for their use as a mouse model to test potential therapies. ApoB100 mice were found to exhibit an age-related decline in retinal function, as measured by electroretinogram (ERG) recordings of their scotopic a-wave, scotopic b-wave; and c-wave amplitudes. ApoB100 mice also displayed a buildup of the cholesterol carrier, apolipoprotein E (apoE) within and below the supporting extracellular matrix, Bruch's membrane (BrM), along with BrM thickening, and accumulation of thin diffuse electron-dense sub-RPE deposits, the severity of which increased with age. Moreover, the combination of apoB100 and advanced age were found to be associated with RPE morphological changes and the presence of sub-retinal immune cells as visualized in RPE-choroid flatmounts. Finally, aged apoB100 mice showed higher levels of circulating and ocular pro-inflammatory cytokines, supporting a link between age and increased local and systemic inflammation. Collectively, the data support the use of aged apoB100 mice as a platform to evaluate potential therapies for retinal degeneration, specifically drugs intended to target removal of lipids from Bruch's membrane and/or alleviate ocular inflammation.


Subject(s)
Macular Degeneration , Retinal Degeneration , Animals , Apolipoproteins E , Cholesterol/metabolism , Cytokines/metabolism , Disease Models, Animal , Inflammation/metabolism , Lipoproteins, LDL/metabolism , Macular Degeneration/genetics , Mice , Mice, Transgenic , Retinal Pigment Epithelium/metabolism , Retinal Pigments/metabolism
14.
J Ocul Pharmacol Ther ; 38(5): 359-371, 2022 06.
Article in English | MEDLINE | ID: mdl-35446130

ABSTRACT

Purpose: The NLRP3 inflammasome, a cytoplasmic signal transduction complex that regulates inflammation, has been implicated in the pathogenesis of age-related macular degeneration (AMD), the leading cause of visual impairment in industrialized countries. We tested the therapeutic effect of anti-inflammatory gene therapy, delivered preventively, in Liver-X-Receptor alpha knockout (LXRα-/-) mice, which exhibit features of dry AMD. Methods:LXRα-/- mice were treated with an adeno-associated virus (AAV) vector that delivers a secretable and cell-penetrating form of the caspase activation and recruitment domain (CARD). A sGFP-FCS-TatCARD-AAV or sGFP-FCS (control) vector was delivered intravitreally to 3-5 month-old, LXRα-/- mice, who were then aged to 15-18 months (12-13 month treatment). Retinal function and morphology were assessed pre- and post-treatment. Results: TatCARD treated LXRα-/- mice did not show improvement in rod and cone photoreceptor function, measured by dark adapted a- and b-wave amplitudes, and rod-saturated b-wave amplitudes. We found a sex-dependent, significant therapeutic effect in c-wave amplitudes in the TatCARD treated mice, which exhibited maintenance of amplitudes in comparison to the significant decline recorded in the control treated group, indicating a therapeutic effect mediated in part through retinal pigment epithelial (RPE) cells. Additionally, the retinas of the TatCARD treated mice exhibited a significant decline in the concentration of interleukin-1 beta (IL-1ß) concomitant with modulation of several inflammatory cytokines in the retina and RPE-choroid tissues, as measured by ELISA and cytokine array, respectively. Conclusion: Collectively, these results support that anti-inflammatory gene constructs such as AAV-TatCARD may be considered for the treatment of inflammation in AMD and other ocular diseases of the posterior pole in which inflammation may play a role. Furthermore, our findings emphasize the need to carefully consider potential sex-different responses when assessing potential therapies in pre-clinical models.


Subject(s)
Macular Degeneration , Retinal Pigments , Animals , Caspase Activation and Recruitment Domain , Disease Models, Animal , Genetic Therapy , Inflammation/pathology , Macular Degeneration/genetics , Macular Degeneration/pathology , Macular Degeneration/therapy , Mice , Retinal Pigment Epithelium/pathology
15.
Mod Pathol ; 35(2): 165-176, 2022 02.
Article in English | MEDLINE | ID: mdl-34389792

ABSTRACT

A common clinical phenotype of several neurodegenerative and systemic disorders including Alzheimer's disease and atherosclerosis is the abnormal accumulation of extracellular material, which interferes with routine cellular functions. Similarly, patients with age-related macular degeneration (AMD), the leading cause of vision loss among the aged population, present with extracellular lipid- and protein-filled basal deposits in the back of the eye. While the exact mechanism of growth and formation of these deposits is poorly understood, much has been learned from investigating their composition, providing critical insights into AMD pathogenesis, prevention, and therapeutics. We identified human osteopontin (OPN), a phosphoprotein expressed in a variety of tissues in the body, as a newly discovered component of basal deposits in AMD patients, with a distinctive punctate staining pattern. OPN expression within these lesions, which are associated with AMD disease progression, were found to co-localize with abnormal calcium deposition. Additionally, OPN puncta colocalized with an AMD risk-associated complement pathway protein, but not with apolipoprotein E or vitronectin, two other well-established basal deposit components. Mechanistically, we found that retinal pigment epithelial cells, cells vulnerable in AMD, will secrete OPN into the extracellular space, under oxidative stress conditions, supporting OPN biosynthesis locally within the outer retina. Finally, we report that OPN levels in plasma of aged (non-AMD) human donors were significantly higher than levels in young (non-AMD) donors, but were not significantly different from donors with the different clinical subtypes of AMD. Collectively, our study defines the expression pattern of OPN in the posterior pole as a function of disease, and its local expression as a potential histopathologic biomarker of AMD.


Subject(s)
Macular Degeneration , Osteopontin , Aging/pathology , Biomarkers , Humans , Macular Degeneration/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Retina/metabolism , Retina/pathology
16.
Ophthalmol Sci ; 1(3): 100053, 2021 Sep.
Article in English | MEDLINE | ID: mdl-36247811

ABSTRACT

Purpose: Micrometer-sized spherules formed of hydroxyapatite or whitlockite were identified within extracellular deposits that accumulate in the space between the basal lamina (BL) of retinal pigment epithelium (RPE) and the inner collagenous layer of Bruch's membrane (sub-RPE-BL space). This investigation aimed to characterize the morphologic features, structure, and distribution of these spherules in aged human eyes with and without clinical indications of age-related macular degeneration (AMD). Design: Experimental study. Participants: Five human eyes with varying degrees of sub-RPE-BL deposits were obtained from the University College London Institute of Ophthalmology and Moorfield's Eye Hospital Tissue Repository or the Advancing Sight Network. Two eyes were reported as having clinical indications of AMD (age, 76-87 years), whereas 3 were considered healthy (age, 69-91 years). Methods: Cadaveric eyes with sub-RPE-BL deposits were embedded in paraffin wax and sectioned to a thickness of 4-10 µm. Spherules were identified and characterized using high-resolution scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy, and time-of-flight secondary ion mass spectroscopy. Main Outcome Measures: High-resolution scanning electron micrographs of spherules, the size-frequency distribution of spherules including average diameter, and the distribution of particles across the central-peripheral axis. Elemental maps and time-of-flight secondary ion mass spectra also were obtained. Results: The precipitation of spherules is ubiquitous across the central, mid-peripheral, and far-peripheral axis in aged human eyes. No significant difference was found in the frequency of spherules along this axis. However, statistical analysis indicated that spherules exhibited significantly different sizes in these regions. In-depth analysis revealed that spherules in the sub-RPE-BL space of eyes with clinical signs of AMD were significantly larger (median diameter, 1.64 µm) than those in healthy aged eyes (median diameter, 1.16 µm). Finally, spherules showed great variation in surface topography and internal structure. Conclusions: The precipitation of spherules in the sub-RPE-BL space is ubiquitous across the central-peripheral axis in aged human eyes. However, a marked difference exists in the size and frequency of spherules in eyes with clinical signs of AMD compared to those without, suggesting that the size and frequency of spherules may be associated with AMD.

18.
Int J Mol Sci ; 21(18)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947781

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which senses environmental, dietary or metabolic signals to mount a transcriptional response, vital in health and disease. As environmental stimuli and metabolic products have been shown to impact the central nervous system (CNS), a burgeoning area of research has been on the role of the AHR in ocular and non-ocular neurodegenerative diseases. Herein, we summarize our current knowledge, of AHR-controlled cellular processes and their impact on regulating pathobiology of select ocular and neurodegenerative diseases. We catalogue animal models generated to study the role of the AHR in tissue homeostasis and disease pathogenesis. Finally, we discuss the potential of targeting the AHR pathway as a therapeutic strategy, in the context of the maladies of the eye and brain.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Eye Diseases/metabolism , Molecular Targeted Therapy , Neurodegenerative Diseases/metabolism , Receptors, Aryl Hydrocarbon/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/agonists , Biotransformation , Central Nervous System/cytology , Central Nervous System/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/physiology , Disease Models, Animal , Eye Diseases/drug therapy , Eye Diseases/genetics , Eye Proteins/physiology , Gene Expression Regulation , Helix-Loop-Helix Motifs , Humans , Ligands , Mammals/metabolism , Multiple Sclerosis/drug therapy , Nerve Degeneration , Nerve Tissue Proteins/physiology , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/genetics , Parkinson Disease/metabolism , Polychlorinated Dibenzodioxins/pharmacology , Quinolones/pharmacology , Quinolones/therapeutic use , Rats , Receptors, Aryl Hydrocarbon/agonists , Signal Transduction/physiology , Transcription, Genetic , Xenobiotics/metabolism
19.
Invest Ophthalmol Vis Sci ; 61(6): 19, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32516405

ABSTRACT

We live in an age where new technologies, and organizations involved in the distribution of biological materials, such as cell culture lines, have eased accessibility to a variety of in vitro models, developed, and/or harvested from different sources. In translational and basic ophthalmology research, in vitro assays are an essential component to discovery and preclinical studies. It is, therefore, of utmost importance for vision researchers to be cognizant of the risks surrounding the use of newly developed cell culture models and how scientific integrity could be impacted when standard operating procedures are not followed for cell line validation and identification. Herein, we discuss authentication challenges we faced when we obtained a newly marketed human choroidal endothelial cell line for vision research, and outline our process of validating and characterizing primary human choroidal endothelial cell lines in the laboratory.


Subject(s)
Cell Line Authentication , Choroid/blood supply , Endothelial Cells/cytology , Biomarkers/metabolism , Biomedical Research , Cell Culture Techniques , Cell Line , Endothelial Cells/metabolism , Flow Cytometry , Genetic Loci , Humans , Ophthalmology , Real-Time Polymerase Chain Reaction
20.
Int J Mol Sci ; 21(8)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326149

ABSTRACT

Vasculogenesis and angiogenesis are physiological mechanisms occurring throughout the body. Any disruption to the precise balance of blood vessel growth necessary to support healthy tissue, and the inhibition of abnormal vessel sprouting has the potential to negatively impact stages of development and/or healing. Therefore, the identification of key regulators of these vascular processes is critical to identifying therapeutic means by which to target vascular-associated compromises and complications. Nuclear receptors are a family of transcription factors that have been shown to be involved in modulating different aspects of vascular biology in many tissues systems. Most recently, the role of nuclear receptors in ocular biology and vasculopathies has garnered interest. Herein, we review studies that have used in vitro assays and in vivo models to investigate nuclear receptor-driven pathways in two ocular vascular diseases associated with blindness, wet or exudative age-related macular degeneration, and proliferative diabetic retinopathy. The potential therapeutic targeting of nuclear receptors for ocular diseases is also discussed.


Subject(s)
Disease Susceptibility , Neovascularization, Pathologic/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Biomarkers , Disease Management , Humans , Immunohistochemistry , Macular Degeneration/etiology , Macular Degeneration/metabolism , Macular Degeneration/pathology , Molecular Targeted Therapy , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Retinal Neovascularization/etiology , Retinal Neovascularization/metabolism , Retinal Neovascularization/pathology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...