Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 257
Filter
1.
PLoS One ; 19(7): e0304684, 2024.
Article in English | MEDLINE | ID: mdl-38985698

ABSTRACT

To effectively remove Diazinon (DZ), Amoxicillin (AMX), and Crystal Violet (CV) from aquatic environments, a novel granular activated carbon (GAC) modified with Polyethylene glycol 600 (PEG) was created and manufactured. The chemical properties were investigated using a variety of characteristic analyses, including FT-IR, XRD, FESEM, and N2 adsorption/desorption. The effectiveness of GAC-PEG's adsorption for the removal of DZ, AMX, and CV was assessed under a variety of conditions, including a pH of 4-9 for the solution, 0.003-0.05 g doses of adsorbent, 50-400 ppm starting concentration, and a reaction time of 5-25 min. For DZ, AMX, and CV adsorption, the maximum adsorption capacity (Qmax) was 1163.933, 1163.100, and 1150.300 mg g-1, respectively. The Langmuir isotherm described all of the data from these adsorption experiments, and the pseudo-second-order well explains all-adsorption kinetics. Most contacts between molecules, electrostatic interactions, π-π interactions, hydrogen bonding, and entrapment in the modified CAG network were used to carry out the DZ, AMX, and CV adsorption on the GAC-PEG. The retrievability of the prepared adsorbent was successfully investigated in studies up to two cycles without loss of adsorption efficiency, and it was shown that it can be efficiently separated.


Subject(s)
Charcoal , Polyethylene Glycols , Wastewater , Water Pollutants, Chemical , Water Purification , Polyethylene Glycols/chemistry , Wastewater/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Charcoal/chemistry , Water Purification/methods , Amoxicillin/chemistry , Hydrogen-Ion Concentration , Gentian Violet/chemistry , Gentian Violet/isolation & purification , Spectroscopy, Fourier Transform Infrared
2.
Mult Scler Relat Disord ; 89: 105764, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39033590

ABSTRACT

In the chronic, organ-specific autoimmune disorder known as multiple sclerosis (MS), the myelin sheath is attacked by immune cells, leading to damage to the central nervous system (CNS). It has been discovered that miRNAs are important in the etiology of MS, since deregulation of miRNAs can lead to defects in immune tolerance. In this study, we sought to investigate the involvement of miR-155 in MS disorder through examination of its altered expression in peripheral blood mononuclear cells (PBMCs) of patients with MS in compare with healthy controls. Furthermore, we investigated the frequency of T helper 17 cells (Th17) in MS patients and analyzed not only the expression of inflammatory cytokines including IL-6, IL-17 and IL-21 in patients' PBMCs, but also their secreted levels in serum of patients suffering from MS. Subsequently, we assessed the correlation between miR-155 expression with Th17 frequency and levels of released cytokines in serum. Upregulated expression of miR-155 was detected in PBMCs of MS patients and the positive correlation between its expression with increased frequency of Th17 cells and their related inflammatory cytokine profile augmented secretion in serum were identified. In conclusion, our study revealed the significant association between Th17 frequency, increased level of cytokines related to Th17 differentiation and function with miR-155 augmented expression in PBMCs. So, our findings suggested that miR-155 and especially its expression in immune cells including effector T cells can be the target of future therapeutic strategies for the management and prevention of MS progression, however, further research is requisite before this approach can be utilized in clinical practice.

3.
Med Oncol ; 41(8): 193, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955918

ABSTRACT

Preclinical and clinical research showed that immune checkpoint blockade provides beneficial effects for many patients with liver cancer. This study aimed to assess the effect of CTLA-4-specific siRNA on the proliferation, cell cycle, migration, and apoptosis of HePG2 cells. Transfection of siRNA was performed by electroporation. The viability of cells was determined through MTT assay. Flow cytometry was performed to investigate the cell cycle and apoptosis rate, and the wound-healing assay was used to determine HepG2 cells migration. The expression levels of CTLA-4, c-Myc, Ki-67, BCL-2, BAX, caspase-9 (CAS9), and MMP-2,9,13 were measured by qRT-PCR. Transfection of specific CTLA-4-siRNA significantly inhibited the expression of the CTLA-4 gene. Also, our results revealed that CTLA-4 silencing diminished the proliferation and migration as well as induced the apoptosis of HePG2 cells. CTLA-4-siRNA transfection induced the cell cycle arrest in G2 phase. Moreover, CTLA-4-siRNA transfection reduced the expression levels of c-Myc, Ki-67, BCL-2, MMP-2,9,13, and elevated the expression levels of BAX and caspase-9. Our results suggest that silencing CTLA-4 through specific siRNA may be a promising strategy for future therapeutic interventions for treating liver cancer.


Subject(s)
Apoptosis , CTLA-4 Antigen , Carcinoma, Hepatocellular , Cell Movement , Cell Proliferation , Liver Neoplasms , RNA, Small Interfering , Humans , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Hep G2 Cells , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/metabolism , CTLA-4 Antigen/metabolism , CTLA-4 Antigen/genetics , CTLA-4 Antigen/antagonists & inhibitors , Cell Movement/genetics , RNA, Small Interfering/genetics , Gene Silencing
4.
ACS Appl Mater Interfaces ; 16(31): 41048-41059, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39051170

ABSTRACT

Metal-organic frameworks (MOFs), particularly UiO-66-NH2, are employed as catalysts in many industrial catalyst applications. As converting catalysts into thin film significantly increases their catalytic properties, we report a general approach to synthesizing MOF thin films (UiO-66-Pyca-CuO). First, functionalization of UiO-66-NH2 was done with 3-pyridine carboxaldehyde by the postsynthesis method, and then, UiO-66-Pyca was entangled on the surface of copper oxide nanoparticles with a modern strategy (MOF thin film). The morphology and structure of the synthesized UiO-66-Pyca-CuO were determined by using X-ray diffraction, Fourier transform infrared, field-emission scanning electron microscopy, energy-dispersive analysis of X-ray, inductively coupled plasma-mass spectrometry, elemental analyses of CHNOS, temperature-programmed desorption of ammonia, Brunauer-Emmett-Teller, and X-ray photoelectron spectroscopy. We studied the catalytic action of the UiO-66-Pyca-CuO thin film in the synthesis of α-aminonitriles via Strecker reaction. Our studies show that this catalysis can be a suitable catalyst in the synthesis of α-aminonitriles because of having advantages such as using the solvent being environmentally friendly, easy separation of the catalyst (only by picking up the MOF thin film from inside the solution), the reaction at room temperature, high yield, and reusability.

5.
Lett Appl Microbiol ; 77(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39081071

ABSTRACT

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), new variants with enhanced transmissibility and pathogenicity have surfaced. The World Health Organization has designated five such variants-Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529)-as variants of concern. Each variant exhibits distinct characteristics, with many displaying a combination of point mutations and insertions/deletions (indels). These genetic alterations, including mutations, recombinations, and rearrangements, contribute to the emergence of new strains that may exhibit modified phenotypes. However, identifying recombinant forms can be challenging due to their resemblance to other lineages. It is critical to monitor the evolution of new recombinant variants, particularly in light of the potential for vaccine-resistant strains and their accelerated propagation. Recombination has played a pivotal role in the development of certain SARS-CoV-2 variants, such as XA, XD, XF, XE, and XBB, among others. This report delves into the significance of recombination in the evolution of SARS-CoV-2 variants, especially Omicron sublineages, underscoring the necessity for continuous surveillance of the SARS-CoV-2 genome to identify newly emerged recombinant variants.


Subject(s)
COVID-19 , Recombination, Genetic , SARS-CoV-2 , SARS-CoV-2/genetics , COVID-19/virology , Humans , Genome, Viral , Mutation
6.
Int J Biol Macromol ; 275(Pt 1): 133412, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38968915

ABSTRACT

Combining a biocompatible hydrogel scaffold with the cell-supportive properties of silk fibroin (SF) and the unique functionalities of ZnFe2O4 nanoparticles creates a promising platform for advanced nanobiomaterials. The research is centered on synthesizing a natural hydrogel using cellulose (Cellul) and sodium alginate (SA) combined with SF and zinc ferrite nanoparticles. A range of analytical and biological assays were conducted to determine the biological and physicochemical properties of the nanobiocomposite. The hemolysis and 2,5-diphenyl-2H-tetrazolium bromide (MTT) assays indicated that the SA-Cellul hydrogel/SF/ZnFe2O4 nanobiocomposite was a biocompatible against human dermal fibroblasts (Hu02) and red blood cells (RBC). In addition, aside from demonstrating outstanding anti-biofilm activity, the nanobiocomposite also promotes the Hu02 cells adhesion, showcasing the synergistic effect of incorporating SF and ZnFe2O4 nanoparticle. These promising results show that this nanobiocomposite has potential applications in various biomedical fields.


Subject(s)
Alginates , Biocompatible Materials , Biofilms , Cell Adhesion , Cellulose , Ferric Compounds , Fibroins , Hydrogels , Zinc , Alginates/chemistry , Fibroins/chemistry , Fibroins/pharmacology , Humans , Hydrogels/chemistry , Cell Adhesion/drug effects , Cellulose/chemistry , Cellulose/pharmacology , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biofilms/drug effects , Zinc/chemistry , Nanoparticles/chemistry , Fibroblasts/drug effects , Hemolysis/drug effects , Cell Line
7.
Small ; : e2402942, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975677

ABSTRACT

Recent advancements in metal-organic frameworks (MOFs) underscore their significant potential in chemical and materials research, owing to their remarkable properties and diverse structures. Despite challenges like intrinsic brittleness, powdered crystalline nature, and limited stability impeding direct applications, MOF-based aerogels have shown superior performance in various areas, particularly in water treatment and contaminant removal. This review highlights the latest progress in MOF-based aerogels, with a focus on hybrid systems incorporating materials like graphene, carbon nanotube, silica, and cellulose in MOF aerogels, which enhance their functional properties. The manifold advantages of MOF-based aerogels in energy storage, adsorption, and catalysis are discussed, with an emphasizing on their improved stability, processability, and ease of handling. This review aims to unlock the potential of MOF-based aerogels and their real-world applications. Aerogels are expected to reshape the technological landscape of MOFs through enhanced stability, adaptability, and efficiency.

8.
Chemosphere ; 361: 142548, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852637

ABSTRACT

This study evaluated the effectiveness of using nanocomposite (NCs) of xanthan gum grafted polyacrylamide crosslinked Borax - iron oxide nanoparticle (XG-g-pAAm-CL-Borax-IONP) to remove the amoxicillin antibiotic (AMX) from an aquatic environment. To confirm the structural characteristics of the prepared XG-g-pAAm-CL-Borax-IONP NCs, unique characterization methods (XRD, FT-IR, FE-SEM, EDX, BET, TGA, Zeta, and VSM) were used. Adsorption experimental setups were performed with the influence of solution pH (4-9), the effect of adsorbent dose (0.003-0.02 g), the effect of contact time (5-45 min), and the effect of initial AMX concentration (50-400 mg/L) to achieve the most efficient adsorption conditions. Based on the Freundlich isotherm model, XG-g-pAAm-CL-Borax-IONP NCs provided the maximum AMX adsorption capacity of 1183.639 mg/g. This research on adsorption kinetics also established that the pseudo-second-order model (R2 = 0.991) is outstanding compatibility with the experimental results. AMX adsorption on the NCs may occur through intermolecular hydrogen bonding, diffusion, and trapping into the polymer network. Even after five cycles, these NCs still displayed the best performance. Based on these results, XG-g-pAAm-CL-Borax-IONP NCs may be a viable material for the purification of AMX from contaminated water.


Subject(s)
Acrylic Resins , Amoxicillin , Borates , Nanocomposites , Polysaccharides, Bacterial , Water Pollutants, Chemical , Nanocomposites/chemistry , Water Pollutants, Chemical/chemistry , Acrylic Resins/chemistry , Amoxicillin/chemistry , Polysaccharides, Bacterial/chemistry , Adsorption , Borates/chemistry , Kinetics , Anti-Bacterial Agents/chemistry , Water Purification/methods , Hydrogen-Ion Concentration
9.
Environ Res ; 258: 119469, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38936496

ABSTRACT

In recent years, MXene has become one of the most intriguing two-dimensional layered (2Dl) materials extensively explored for various applications. In this study, a Ti3C2 MXene/rGo-Cu2O Nanocomposite (TGCNCs) was developed to eliminate Safranin-O effectively (SO) and Acid Fuchsin (AF) as cationic dyes from the aquatic environment. Multistep was involved in the preparation of the adsorbent system, including the Preparation of Ti3C2, after that, GO synthesis by the Humer method, followed by rGO production, then added CuSO4 to obtain a final Nanocomposite (NCs) called "TGCNCs". The structure of TGCNCs can be varied in several ways, including FTIR, SEM, TGA, Zeta, EDX, XRD, and BET, to affirm the efficacious preparation of TGCNCs. A novel adsorbent system was developed to remove SO and AF, both cationic dyes. Various adsorption conditions have been optimized through batch adsorption tests, including the pH of the solution (4-12), the effect of dosage (0.003-0.03 g), the impact of the contact time (5-30 min), and the effect of beginning dye concentration (25-250 mg/L). Accordingly, the TGCNCs exhibited excellent fitting for Freundlich isotherm mode, resulting in maximum AF and SO adsorption capacities of 909.09 and 769.23 mg g-1. This research on adsorption kinetics suggests that a pseudo-second-order (PSO) model would fit well with the experimental data (RSO2 = 0.998 and RAF2 = 0.990). It is evident from the thermodynamic parameters that adsorption is an endothermic process that is spontaneous and favorable. During the adsorption of SO and AF onto NCs, it is hypothesized that these molecules interact intramolecularly through stacking interactions, H-bond interactions, electrostatic interactions, and entrapment within the polymeric Poros structure nanocomposite. Regeneration studies lasting up to five cycles were the most effective for both organic dyes under study.


Subject(s)
Copper , Nanocomposites , Phenazines , Thermodynamics , Titanium , Water Pollutants, Chemical , Nanocomposites/chemistry , Phenazines/chemistry , Kinetics , Adsorption , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Copper/chemistry , Coloring Agents/chemistry , Rosaniline Dyes/chemistry , Graphite/chemistry , Benzenesulfonates
10.
Nat Commun ; 15(1): 4427, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789427

ABSTRACT

Atoms and their different arrangements into molecules are nature's building blocks. In a regime of strong coupling, matter hybridizes with light to modify physical and chemical properties, hence creating new building blocks that can be used for avant-garde technologies. However, this regime relies on the strong confinement of the optical field, which is technically challenging to achieve, especially at terahertz frequencies in the far-infrared region. Here we demonstrate several schemes of electromagnetic field confinement aimed at facilitating the collective coupling of a localized terahertz photonic mode to molecular vibrations. We observe an enhanced vacuum Rabi splitting of 200 GHz from a hybrid cavity architecture consisting of a plasmonic metasurface, coupled to glucose, and interfaced with a planar mirror. This enhanced light-matter interaction is found to emerge from the modified intracavity field of the cavity, leading to an enhanced zero-point electric field amplitude. Our study provides key insight into the design of polaritonic platforms with organic molecules to harvest the unique properties of hybrid light-matter states.

11.
Cogn Neurodyn ; 18(2): 349-356, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38699620

ABSTRACT

Muscle synergies have been hypothesized as specific predefined motor primitives that the central nervous system can reduce the complexity of motor control by using them, but how these are expressed in brain activity is ambiguous yet. The main purpose of this paper is to develop synergy-based neural decoding of motor primitives, so for the first time, brain activity and muscle synergy map of the upper extremity was investigated in the activity of daily living movements. To find the relationship between brain activities and muscle synergies, electroencephalogram (EEG) and electromyogram (EMG) signals were acquired simultaneously during activities of daily living. To extract the maximum correlation of neural commands with muscle synergies, application of a combined partial least squares and canonical correlation analysis (PLS-CCA) method was proposed. The Elman neural network was used to decode the relationship between extracted motor commands and muscle synergies. The performance of proposed method was evaluated with tenfold cross-validation and muscle synergy estimation of brain activity with R, VAF, and MSE of 84 ± 2.6%, 70 ± 4.7%, and 0.00011 ± 0.00002 were quantified respectively. Furthermore, the similarity between actual and reconstructed muscle activations was achieved more than 92% for correlation coefficient. To compare with the existing methods, our results showed significantly more accuracy of the model performance. Our results confirm that use of the expression of muscle synergies in brain activity can estimate the neural decoding performance for motor control that can be used to develop neurorehabilitation tools such as neuroprosthesis.

12.
Sci Rep ; 14(1): 10508, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714808

ABSTRACT

In this study, a novel nanobiocomposite consisting of agar (Ag), tragacanth gum (TG), silk fibroin (SF), and MOF-5 was synthesized and extensively investigated by various analytical techniques and basic biological assays for potential biomedical applications. The performed Trypan blue dye exclusion assay indicated that the proliferation percentage of HEK293T cells was 71.19%, while the proliferation of cancer cells (K-562 and MCF-7) was significantly lower, at 10.74% and 3.33%. Furthermore, the Ag-TG hydrogel/SF/MOF-5 nanobiocomposite exhibited significant antimicrobial activity against both E. coli and S. aureus strains, with growth inhibition rates of 76.08% and 69.19% respectively. Additionally, the hemolytic index of fabricated nanobiocomposite was found approximately 19%. These findings suggest that the nanobiocomposite exhibits significant potential for application in cancer therapy and wound healing.


Subject(s)
Agar , Fibroins , Hydrogels , Nanocomposites , Tragacanth , Fibroins/chemistry , Humans , Hydrogels/chemistry , Agar/chemistry , Nanocomposites/chemistry , Tragacanth/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Staphylococcus aureus/drug effects , HEK293 Cells , Zinc/chemistry , Cell Proliferation/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Microbial Sensitivity Tests , MCF-7 Cells , Cell Line, Tumor
13.
Phys Chem Chem Phys ; 26(23): 16407-16437, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38807475

ABSTRACT

As one of the most instrumental components in the architecture of advanced nanomedicines, plasmonic nanostructures (mainly gold and silver nanomaterials) have been paid a lot of attention. This type of nanomaterial can absorb light photons with a specific wavelength and generate heat or excited electrons through surface resonance, which is a unique physical property. In innovative biomaterials, a significant number of theranostic (therapeutic and diagnostic) materials are produced through the conjugation of thiol-containing ingredients with gold and silver nanoparticles (Au and Ag NPs). Hence, it is essential to investigate Au/Ag-S interfaces precisely and determine the exact bonding states in the active nanobiomaterials. This study intends to provide useful insights into the interactions between Au/Ag NPs and thiol groups that exist in the structure of biomaterials. In this regard, the modeling of Au/Ag-S bonding in active biological ingredients is precisely reviewed. Then, the physiological stability of Au/Ag-based plasmonic nanobioconjugates in real physiological environments (pharmacokinetics) is discussed. Recent experimental validation and achievements of plasmonic theranostics and radiolabelled nanomaterials based on Au/Ag-S conjugation are also profoundly reviewed. This study will also help researchers working on biosensors in which plasmonic devices deal with the thiol-containing biomaterials (e.g., antibodies) inside blood serum and living cells.


Subject(s)
Gold , Metal Nanoparticles , Silver , Sulfur , Gold/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Sulfur/chemistry , Humans , Theranostic Nanomedicine , Biocompatible Materials/chemistry , Animals , Sulfhydryl Compounds/chemistry , Nanostructures/chemistry
14.
J Integr Neurosci ; 23(4): 73, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38682224

ABSTRACT

BACKGROUND: To enhance the information transfer rate (ITR) of a steady-state visual evoked potential (SSVEP)-based speller, more characters with flickering symbols should be used. Increasing the number of symbols might reduce the classification accuracy. A hybrid brain-computer interface (BCI) improves the overall performance of a BCI system by taking advantage of two or more control signals. In a simultaneous hybrid BCI, various modalities work with each other simultaneously, which enhances the ITR. METHODS: In our proposed speller, simultaneous combination of electromyogram (EMG) and SSVEP was applied to increase the ITR. To achieve 36 characters, only nine stimulus symbols were used. Each symbol allowed the selection of four characters based on four states of muscle activity. The SSVEP detected which symbol the subject was focusing on and the EMG determined the target character out of the four characters dedicated to that symbol. The frequency rate for character encoding was applied in the EMG modality and latency was considered in the SSVEP modality. Online experiments were carried out on 10 healthy subjects. RESULTS: The average ITR of this hybrid system was 96.1 bit/min with an accuracy of 91.2%. The speller speed was 20.9 char/min. Different subjects had various latency values. We used an average latency of 0.2 s across all subjects. Evaluation of each modality showed that the SSVEP classification accuracy varied for different subjects, ranging from 80% to 100%, while the EMG classification accuracy was approximately 100% for all subjects. CONCLUSIONS: Our proposed hybrid BCI speller showed improved system speed compared with state-of-the-art systems based on SSVEP or SSVEP-EMG, and can provide a user-friendly, practical system for speller applications.


Subject(s)
Brain-Computer Interfaces , Electromyography , Evoked Potentials, Visual , Word Processing , Humans , Word Processing/methods
15.
16.
RSC Adv ; 14(19): 13016, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38655489

ABSTRACT

Expression of concern for 'Facile route to synthesize Fe3O4@acacia-SO3H nanocomposite as a heterogeneous magnetic system for catalytic applications' by Reza Taheri-Ledari et al., RSC Adv., 2020, 10, 40055-40067, https://doi.org/10.1039/D0RA07986C.

17.
RSC Adv ; 14(19): 13676-13684, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38665491

ABSTRACT

Herein, a new magnetic nanobiocomposite based on a synthesized cross-linked pectin-cellulose hydrogel (cross-linked Pec-Cel hydrogel) substrate was designed and synthesized. The formation of the cross-linked Pec-Cel hydrogel with a calcium chloride agent and its magnetization process caused a new and efficient magnetic nanobiocomposite. Several spectral and analytical techniques, including FTIR, SEM, VSM, TGA, XRD, and EDX analyses, were performed to confirm and characterize the structural features of the magnetic cross-linked pectin-cellulose hydrogel nanobiocomposite (magnetic cross-linked Pec-Cel hydrogel nanobiocomposite). Based on SEM images, prepared Fe3O4 magnetic nanoparticles (MNPs) were uniformly dispersed in the Pec-Cel hydrogel context, representing an average particle size between 50.0 and 60.0 nm. The XRD pattern also confirms the crystallinity of the magnetic nanobiocomposite. All constituent elements and their distribution have been depicted in the EDX analysis of the magnetic nanobiocomposite. VSM curves confirmed the superparamagnetic behavior of Fe3O4 MNPs and the magnetic nanobiocomposite with a saturation magnetization of 77.31 emu g-1 and 48.80 emu g-1, respectively. The thermal stability of the nanobiocomposite was authenticated to ca. 800 °C based on the TGA thermogram. Apart from analyzing the structural properties of the magnetic cross-linked Pec-Cel hydrogel nanobiocomposite, different concentrations (0.5 mg mL-1, 1.0 mg mL-1, 2.0 mg mL-1, 5.0 mg mL-1, and 10.0 mg mL-1) of this new magnetic nanostructure were exposed to an alternating magnetic field (AMF) at different frequencies (100.0 MHz, 200.0 MHz, 300.0 MHz, and 400.0 MHz) to evaluate its capacity for an in vitro hyperthermia process; in addition, the highest specific absorption rate (126.0 W g-1) was obtained by the least magnetic nanobiocomposite concentration (0.5 mg mL-1).

18.
Talanta ; 275: 126099, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38640517

ABSTRACT

Tuberculosis (TB) is one of the major killer diseases affecting lung parenchymal tissues. Mycobacterium tuberculosis (Mtb) is the bacterium that causes it. It most commonly affects the lungs, although it can affect any part of the body, including the stomach, glands, bones, and nervous system. Although anti-mycobacterial drugs are available, it remains a major threat to public health due to the rise of drug-resistant strains, and early and accurate diagnosis is very important. Currently, research science and medical communities are focusing on the use of cost-effective biosensors to manage human biological processes and assess accurate health diagnostics. Due to their high sensitivity in chemical and biological assays, nanomaterials have been considered in the field of biosensors for better diagnosis, and among them, gold nanoparticles (AuNPs) can play an important role in accelerating the diagnosis of TB. Superior biocompatibility, conductivity, catalytic properties, high surface-to-volume ratio, and high density enable their widespread use in the fabrication of biosensors. This review evaluates the diagnostic accuracy of AuNP-based biosensors for the detection of Mtb. According to different transducers of biosensors, their structure, performance, advantages and limitations are summarized and compared. Moreover, the upcoming challenges in their analytical performance have been highlighted and the strategies to overcome those challenges have been briefly discussed.


Subject(s)
Biosensing Techniques , Gold , Metal Nanoparticles , Mycobacterium tuberculosis , Tuberculosis , Gold/chemistry , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Humans , Tuberculosis/diagnosis , Mycobacterium tuberculosis/isolation & purification
19.
Sci Rep ; 14(1): 8166, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589455

ABSTRACT

This study involves the development of a new nanocomposite material for use in biological applications. The nanocomposite was based on tragacanth hydrogel (TG), which was formed through cross-linking of Ca2+ ions with TG polymer chains. The utilization of TG hydrogel and silk fibroin as natural compounds has enhanced the biocompatibility, biodegradability, adhesion, and cell growth properties of the nanobiocomposite. This advancement makes the nanobiocomposite suitable for various biological applications, including drug delivery, wound healing, and tissue engineering. Additionally, Fe3O4 magnetic nanoparticles were synthesized in situ within the nanocomposite to enhance its hyperthermia efficiency. The presence of hydrophilic groups in all components of the nanobiocomposite allowed for good dispersion in water, which is an important factor in increasing the effectiveness of hyperthermia cancer therapy. Hemolysis and 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays were conducted to evaluate the safety and efficacy of the nanobiocomposite for in-vivo applications. Results showed that even at high concentrations, the nanobiocomposite had minimal hemolytic effects. Finally, the hyperthermia application of the hybrid scaffold was evaluated, with a maximum SAR value of 41.2 W/g measured in the first interval.


Subject(s)
Fibroins , Hyperthermia, Induced , Tragacanth , Tissue Scaffolds , Hydrogels , Magnetic Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL