Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(20)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34684680

ABSTRACT

A series of fourteen 2-aryl-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-ones was prepared at room temperature by T3P-mediated cyclization of N-phenyl-C-aryl imines with thionicotinic acid, two difficult substrates. The reactions were operationally simple, did not require specialized equipment or anhydrous solvents, could be performed as either two or three component reactions, and gave moderate-good yields as high as 63%. This provides ready access to N-phenyl compounds in this family, which have been generally difficult to prepare. As part of the study, the first crystal structure of neutral thionicotinic acid is also reported, and showed the molecule to be in the form of the thione tautomer. Additionally, the synthesized compounds were tested against T. brucei, the causative agent of Human African Sleeping Sickness. Screening at 50 µM concentration showed that five of the compounds strongly inhibited growth and killed parasites.


Subject(s)
Thiazines , Trypanosoma brucei brucei/drug effects , Anhydrides/chemistry , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Organophosphonates/chemistry , Thiazines/chemical synthesis , Thiazines/pharmacology
2.
Mol Biochem Parasitol ; 245: 111396, 2021 09.
Article in English | MEDLINE | ID: mdl-34302898

ABSTRACT

Kinetoplastid parasites are model eukaryotes with a complex cell cycle that is highly regulated both spatially and temporally. In addition, diseases caused by these parasites continue to have a significant impact on human and animal health worldwide. While there have been advancements in chemotherapy for these diseases, there is a continual need for an arsenal of compounds that have robust anti-parasite activity with minimal impact on the human host. While investigating a series of 2,3-diphenyl-2,3-dihydro-4H-1,3-thiaza-4-one heterocycles with potential activity against these parasites, we found a pyridothiazinone that inhibits growth of the monoxenous parasite Crithidia fasciculata and two life cycle stages of Trypanosoma brucei. This inhibition is more pronounced in T. brucei and is associated with an unusual pre-abscission cell cycle arrest. Exploring the mode of action for these and related compounds in kinetoplastids may provide tools with which to explore cell cycle regulation in these important organisms.


Subject(s)
Parasites , Trypanosoma brucei brucei , Animals , Biphenyl Compounds , Crithidia fasciculata , Cytokinesis , Humans
3.
PLoS One ; 13(12): e0202711, 2018.
Article in English | MEDLINE | ID: mdl-30592713

ABSTRACT

Mitochondria are central organelles in cellular metabolism. Their structure is highly dynamic, allowing them to adapt to different energy requirements, to be partitioned during cell division, and to maintain functionality. Mitochondrial dynamics, including membrane fusion and fission reactions, are well studied in yeast and mammals but it is not known if these processes are conserved throughout eukaryotic evolution. Kinetoplastid parasites are some of the earliest-diverging eukaryotes to retain a mitochondrion. Each cell has only a single mitochondrial organelle, making them an interesting model for the role of dynamics in controlling mitochondrial architecture. We have investigated the mitochondrial division cycle in the kinetoplastid Crithidia fasciculata. The majority of mitochondrial biogenesis occurs during the G1 phase of the cell cycle, and the mitochondrion is divided symmetrically in a process coincident with cytokinesis. Live cell imaging revealed that the mitochondrion is highly dynamic, with frequent changes in the topology of the branched network. These remodeling reactions include tubule fission, fusion, and sliding, as well as new tubule formation. We hypothesize that the function of this dynamic remodeling is to homogenize mitochondrial contents and to facilitate rapid transport of mitochondria-encoded gene products from the area containing the mitochondrial nucleoid to other parts of the organelle.


Subject(s)
Crithidia fasciculata/metabolism , G1 Phase/physiology , Mitochondria/metabolism , Mitochondrial Dynamics/physiology , Crithidia fasciculata/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...