Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1212136, 2023.
Article in English | MEDLINE | ID: mdl-37662941

ABSTRACT

Introduction: Cellular immune responses against AAV vector capsid represent an obstacle for successful gene therapy. Previous studies have used overlapping peptides spanning the entire capsid sequence to identify T cell epitopes recognized by AAV-specific CD8+ T cells. However, the repertoire of peptides naturally displayed by HLA class I molecules for CD8 T cell recognition is unknown. Methods: Using mRNA transfected monocyte-derived dendritic cells (MDDCs) and MHC-associated peptide proteomics (MAPPs), we identified the HLA class I immunopeptidomes of AAV2, AAV6 and AAV9 capsids. MDDCs were isolated from a panel of healthy donors that have diverse alleles across the US population. mRNA-transfected MDDCs were lysed, the peptide:HLA complexes immunoprecipitated, and peptides eluted and analyzed by mass spectrometry. Results: We identified 65 AAV capsid-derived peptides loaded on HLA class I molecules of mRNA transfected monocyte derived dendritic cells. The HLA class I peptides are distributed along the entire capsid and more than 60% are contained within HLA class II clusters. Most of the peptides are organized as single species, however we identified twelve clusters containing at least 2 peptides of different lengths. Only 9% of the identified peptides have been previously identified as T cell epitopes, demonstrating that the immunogenicity potential for the vast majority of the AAV HLA class I immunopeptidome remains uncharacterized. In contrast, 12 immunogenic epitopes identified before were not found to be naturally processed in our study. Remarkably, 11 naturally presented AAV peptides were highly conserved among the three serotypes analyzed suggesting the possibility of cross-reactive AAV-specific CD8 T cells. Discussion: This work is the first comprehensive study identifying the naturally displayed HLA class I peptides derived from the capsid of AAVs. The results from this study can be used to generate strategies to assess immunogenicity risk and cross-reactivity among serotypes during gene therapies.


Subject(s)
Capsid Proteins , Epitopes, T-Lymphocyte , Capsid , Alleles , RNA, Messenger
2.
Front Immunol ; 13: 1067399, 2022.
Article in English | MEDLINE | ID: mdl-36605211

ABSTRACT

Introduction: Gene therapies are using Adeno-associated viruses (AAVs) as vectors, but immune responses against the capsids pose challenges to their efficiency and safety. Helper T cell recognition of capsid-derived peptides bound to human leukocyte antigen (HLA) class II molecules is an essential step in the AAV-specific adaptive immunity. Methods: Using MHC-associated peptide proteomics, we identified the HLA-DR and HLA-DQ immunopeptidomes of the capsid proteins of three different AAV serotypes (AAV2, AAV6, and AAV9) from a panel of healthy donors selected to represent a majority of allele usage. Results: The identified sequences span the capsids of all serotypes, with AAV2 having the highest peptide count. For all the serotypes, multiple promiscuous peptides were identified and displayed by both HLA-DR and -DQ. However, despite high sequence homology, there were few identical peptides among AAV2, AAV6, and AAV9 immunopeptidomes, and none were promiscuous. Discussion: Results from this work represent a comprehensive immunopeptidomics research of potential CD4+ T cell epitopes and provide the basis for immunosurveillance efforts for safer and more efficient AAV-based gene therapies.


Subject(s)
Capsid Proteins , Capsid , Humans , Capsid Proteins/genetics , Dependovirus , Peptides/metabolism , HLA Antigens/metabolism
3.
MAbs ; 12(1): 1764829, 2020.
Article in English | MEDLINE | ID: mdl-32370596

ABSTRACT

Biologics have the potential to induce an immune response when used therapeutically. A number of in vitro assays are currently used preclinically to predict the risk of immunogenicity, but the validation of these preclinical tools suffers from the relatively small number of accessible immunogenic molecules and the limited understanding of the mechanisms underlying the immunogenicity of biologics. Here, we present the post-hoc analysis of three monoclonal antibodies with high immunogenicity in the clinic. Two of the three antibodies elicited a CD4 T cell proliferative response in multiple donors in a peripheral blood mononuclear cell assay, but required different experimental conditions to induce these responses. The third antibody did not trigger any T cell response in this assay. These distinct capacities to promote CD4 T cell responses in vitro were mirrored by different capacities to stimulate innate immune cells. Only one of the three antibodies was capable of inducing human dendritic cell (DC) maturation; the second antibody promoted monocyte activation while the third one did not induce any innate cell activation in vitro. All three antibodies exhibited a moderate to high internalization by human DCs and MHC-associated peptide proteomics analysis revealed the presence of potential T cell epitopes that were confirmed by a T-cell proliferation assay. Collectively, these findings highlight the existence of distinct immune stimulatory mechanisms for immunogenic antibodies. These findings have implications for the preclinical immunogenicity risk assessment of biologics.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody Formation/immunology , Antigen Presentation/immunology , CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Lymphocyte Activation/immunology , Antibodies, Monoclonal/pharmacology , Antibody Formation/drug effects , Antigen Presentation/drug effects , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation/drug effects , Cells, Cultured , Dendritic Cells/drug effects , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lymphocyte Activation/drug effects
4.
MAbs ; 10(6): 913-921, 2018.
Article in English | MEDLINE | ID: mdl-29953319

ABSTRACT

Immunomodulatory monoclonal IgG1 antibodies developed for cancer and autoimmune disease have an inherent risk of systemic release of pro-inflammatory cytokines. In vitro cytokine release assays are currently used to predict cytokine release syndrome (CRS) risk, but the validation of these preclinical tools suffers from the limited number of characterized CRS-inducing IgG1 antibodies and the poor understanding of the mechanisms regulating cytokine release. Here, we incubated human whole blood from naïve healthy volunteers with four monoclonal IgG1 antibodies with different proven or predicted capacity to elicit CRS in clinic and measured cytokine release using a multiplex assay. We found that, in contrast to anti-CD52 antibodies (Campath-1H homolog) that elicited high level of multiple inflammatory cytokines from human blood cells in vitro, other IgG1 antibodies with CRS-inducing potential consistently induced release of a single tested cytokine, interferon (IFN)-γ, with a smaller magnitude than Campath. IFN-γ expression was observed as early as 2-4 h after incubation, mediated by natural killer cells, and dependent upon tumor necrosis factor and FcγRIII. Importantly, the magnitude of the IFN-γ response elicited by IgG1 antibodies with CRS-inducing potential was determined by donor FcγRIIIa-V158F polymorphism. Overall, our results highlight the importance of FcγRIIIa-dependent IFN-γ release in preclinical cytokine release assay for the prediction of CRS risk associated with therapeutic IgG1 antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Immunoglobulin G/immunology , Interferon-gamma/immunology , Receptors, IgG/immunology , Alemtuzumab/immunology , Alemtuzumab/therapeutic use , Antibodies, Monoclonal/therapeutic use , Cytokines/blood , Cytokines/immunology , Cytokines/metabolism , Humans , Immunoassay/methods , Immunoglobulin G/therapeutic use , Interferon-gamma/blood , Interferon-gamma/metabolism , Neoplasms/drug therapy , Neoplasms/immunology , Polymorphism, Genetic/immunology , Prognosis , Receptors, IgG/genetics , Syndrome
5.
J Virol ; 91(19)2017 10 01.
Article in English | MEDLINE | ID: mdl-28701397

ABSTRACT

Manipulation of host cellular pathways is a strategy employed by gammaherpesviruses, including mouse gammaherpesvirus 68 (MHV68), in order to negotiate a chronic infection. Ataxia-telangiectasia mutated (ATM) plays a unique yet incompletely understood role in gammaherpesvirus infection, as it has both proviral and antiviral effects. Chronic gammaherpesvirus infection is poorly controlled in a host with global ATM insufficiency, whether the host is a mouse or a human. In contrast, ATM facilitates replication, reactivation, and latency establishment of several gammaherpesviruses in vitro, suggesting that ATM is proviral in the context of infected cell cultures. The proviral role of ATM is also evident in vivo, as myeloid-specific ATM expression facilitates MHV68 reactivation during the establishment of viral latency. In order to better understand the complex relationship between host ATM and gammaherpesvirus infection, we depleted ATM specifically in B cells, a cell type critical for chronic gammaherpesvirus infection. B cell-specific ATM deficiency attenuated the establishment of viral latency due to compromised differentiation of ATM-deficient B cells. Further, we found that during long-term infection, peritoneal B-1b, but not related B-1a, B cells display the highest frequency of gammaherpesvirus infection. While ATM expression did not affect gammaherpesvirus tropism for B-1 B cells, B cell-specific ATM expression was necessary to support viral reactivation from peritoneal cells during long-term infection. Thus, our study reveals a role of ATM as a host factor that promotes chronic gammaherpesvirus infection of B cells.IMPORTANCE Gammaherpesviruses infect a majority of the human population and are associated with cancer, including B cell lymphomas. ATM is a unique host kinase that has both proviral and antiviral roles in the context of gammaherpesvirus infection. Further, there is insufficient understanding of the interplay of these roles in vivo during chronic infection. In this study, we show that ATM expression by splenic B cells is required for efficient establishment of gammaherpesvirus latency. We also show that ATM expression by peritoneal B cells is required to facilitate viral reactivation during long-term infection. Thus, our study defines a proviral role of B cell-specific ATM expression during chronic gammaherpesvirus infection.


Subject(s)
B-Lymphocytes/metabolism , Herpesviridae Infections/virology , Rhadinovirus/growth & development , Virus Activation/physiology , Virus Latency/physiology , Animals , Ataxia Telangiectasia Mutated Proteins/biosynthesis , Ataxia Telangiectasia Mutated Proteins/deficiency , Ataxia Telangiectasia Mutated Proteins/genetics , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line , Herpesviridae Infections/immunology , Host-Pathogen Interactions/immunology , Mice , Mice, Inbred C57BL , Peritoneum/cytology , Peritoneum/immunology , Rhadinovirus/immunology , Spleen/cytology , Spleen/immunology , Virus Activation/genetics
6.
Virology ; 483: 264-74, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26001649

ABSTRACT

Gammaherpesviruses are cancer-associated pathogens that establish life-long infection in most adults. Insufficiency of Ataxia-Telangiectasia mutated (ATM) kinase leads to a poor control of chronic gammaherpesvirus infection via an unknown mechanism that likely involves a suboptimal antiviral response. In contrast to the phenotype in the intact host, ATM facilitates gammaherpesvirus reactivation and replication in vitro. We hypothesized that ATM mediates both pro- and antiviral activities to regulate chronic gammaherpesvirus infection in an immunocompetent host. To test the proposed proviral activity of ATM in vivo, we generated mice with ATM deficiency limited to myeloid cells. Myeloid-specific ATM deficiency attenuated gammaherpesvirus infection during the establishment of viral latency. The results of our study uncover a proviral role of ATM in the context of gammaherpesvirus infection in vivo and support a model where ATM combines pro- and antiviral functions to facilitate both gammaherpesvirus-specific T cell immune response and viral reactivation in vivo.


Subject(s)
Gammaherpesvirinae/physiology , Herpesviridae Infections/virology , Myeloid Cells/virology , Virus Activation , Adult , Animals , Ataxia Telangiectasia Mutated Proteins/deficiency , Ataxia Telangiectasia Mutated Proteins/metabolism , Chronic Disease , Host-Pathogen Interactions , Humans , Mice, Inbred C57BL , Mice, Knockout
7.
J Immunol ; 193(6): 2812-20, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25086170

ABSTRACT

TCR signal strength during priming is a key determinant of CD4 T cell activation, but its impact on effector CD4 T functions in vivo remains unclear. In this study, we compare the functionality of CD4 T cell responses induced by peptides displaying varying binding half-lives with MHC class II before and after influenza virus infection. Although significant quantitative and qualitative differences in CD4 T cell responses were observed before infection between mice vaccinated with low- or high-stability peptides, both mice mounted robust early Th1 effector cytokine responses upon influenza challenge. However, only effector CD4 T cells induced by low-stability peptides proliferated and produced IL-17A after influenza challenge. In contrast, effector T cells elicited by higher-stability peptides displayed a terminally differentiated phenotype and divided poorly. This defective proliferation was T cell intrinsic but could not be attributed to a reduced expression of lymph node homing receptors. Instead, we found that CD4 T cells stimulated with higher-stability peptides exhibited decreased responsiveness to low levels of Ag presentation. Our study reveals the critical role of TCR signal strength during priming for the function and Ag sensitivity of effector CD4 T cells during viral challenge.


Subject(s)
Lymphocyte Activation/immunology , Orthomyxoviridae Infections/immunology , Receptors, Antigen, T-Cell/immunology , Th1 Cells/immunology , Animals , Antibody Formation/immunology , Antigen Presentation/immunology , Cell Proliferation , Cells, Cultured , Interleukin-17/biosynthesis , Mice , Mice, Transgenic , Orthomyxoviridae/immunology , Signal Transduction/immunology
8.
Sci Signal ; 5(235): pe33, 2012 Jul 31.
Article in English | MEDLINE | ID: mdl-22855504

ABSTRACT

Chemokines regulate T cell trafficking into secondary lymphoid organs and migration across endothelial cells in response to inflammatory signals. The small guanosine triphosphatase Rap1 is a critical regulator of chemokine signaling in T cells, but how chemokines activate Rap1 has been unclear. A study showed that Abl family tyrosine kinases were essential for chemokine-induced Rap1 activation, T cell polarization, and migration. Abl family kinases promoted Rap1 activation by phosphorylating the adaptor protein human enhancer of filamentation 1 (HEF1), thus establishing a critical Abl-HEF1-Rap1 signaling axis for chemokine-induced T cell migration.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Movement/immunology , Chemokines/pharmacology , Lymphocyte Activation/drug effects , Phosphoproteins/metabolism , Protein-Tyrosine Kinases/metabolism , Signal Transduction/immunology , T-Lymphocytes/immunology , rap1 GTP-Binding Proteins/immunology , Humans , Models, Immunological , Phosphorylation
9.
J Immunol ; 189(5): 2309-17, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22844120

ABSTRACT

Diverse Ag-specific memory TCR repertoires are essential for protection against pathogens. Subunit vaccines that combine peptide or protein Ags with TLR agonists are very potent at inducing T cell immune responses, but their capacity to elicit stable and diverse memory CD4 T cell repertoires has not been evaluated. In this study, we examined the evolution of a complex Ag-specific population during the transition from primary effectors to memory T cells after peptide or protein vaccination. Both vaccination regimens induced equally diverse effector CD4 TCR repertoires, but peptide vaccines skewed the memory CD4 TCR repertoire toward high-affinity clonotypes whereas protein vaccines maintained low-affinity clonotypes in the memory compartment. CD27-mediated signaling was essential for the maintenance of low-affinity clonotypes after protein vaccination but was not sufficient to promote their survival following peptide vaccination. The rapid culling of the TCR repertoire in peptide-immunized mice coincided with a prolonged proliferation phase during which low-affinity clonotypes disappeared despite exhibiting no sign of enhanced apoptosis. Our study reveals a novel affinity threshold for memory CD4 T cell differentiation following vaccination and suggests a role for nonapoptotic cell death in the regulation of CD4 T cell clonal selection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , Cytochrome c Group/immunology , Immunologic Memory , Receptors, Antigen, T-Cell/metabolism , Vaccines, Subunit/immunology , Animals , Apoptosis/immunology , CD4-Positive T-Lymphocytes/cytology , Cell Proliferation , Clone Cells , Cytochrome c Group/administration & dosage , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Transgenic , Moths , Protein Binding/immunology , Receptors, Antigen, T-Cell/physiology , Vaccines, Subunit/administration & dosage
10.
Eur J Immunol ; 42(10): 2597-607, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22777796

ABSTRACT

The maintenance of B-cell anergy is essential to prevent the production of autoantibodies and autoimmunity. However, B-cell extrinsic mechanisms that regulate B-cell anergy remain poorly understood. We previously demonstrated that regulatory T (Treg) cells are necessary for the maintenance of B-cell anergy. We now show that in Treg-cell-deficient mice, helper T cells are necessary and sufficient for loss of B-cell tolerance/anergy. In addition, we show that the absence of Treg cells is associated with an increase in the proportion of CD4(+) cells that express GL7 and correlated with an increase in germinal center follicular helper T (GC-T(FH) ) cells. These GC-T(FH) cells, but not those from Treg-cell-sufficient hosts, were sufficient to drive antibody production by anergic B cells. We propose that a function of Treg cells is to prevent the expansion of T(FH) cells, especially GC-T(FH) cells, which support autoantibody production.


Subject(s)
B-Lymphocytes/immunology , Clonal Anergy , Germinal Center/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antibody Formation , Antigens, Differentiation/genetics , Antigens, Differentiation/metabolism , Autoantibodies/immunology , Cell Communication/immunology , Cell Differentiation/immunology , Cell Proliferation , Cells, Cultured , Immune Tolerance , Lymphocyte Activation , Lymphocyte Depletion , Mice , Mice, Inbred C57BL , Mice, Transgenic
11.
J Immunol ; 188(11): 5223-6, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22544930

ABSTRACT

The absence of regulatory T cells (Tregs) results in significant immune dysregulation that includes autoimmunity. The mechanism(s) by which Tregs suppress autoimmunity remains unclear. We have shown that B cell anergy, a major mechanism of B cell tolerance, is broken in the absence of Tregs. In this study, we identify a unique subpopulation of CD4(+) Th cells that are highly supportive of Ab production and promote loss of B cell anergy. Notably, this novel T cell subset was shown to express the germinal center Ag GL7 and message for the B cell survival factor BAFF, yet failed to express markers of the follicular Th cell lineage. We propose that the absence of Tregs results in the expansion of a unique nonfollicular Th subset of helper CD4(+) T cells that plays a pathogenic role in autoantibody production.


Subject(s)
B-Lymphocyte Subsets/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Clonal Anergy/immunology , Clonal Deletion/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Animals , B-Lymphocyte Subsets/cytology , B-Lymphocyte Subsets/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Lineage/immunology , Cells, Cultured , Clonal Anergy/genetics , Clonal Deletion/genetics , Coculture Techniques , Mice , Mice, Inbred C57BL , Mice, Transgenic
12.
Immunol Cell Biol ; 89(1): 54-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20956989

ABSTRACT

Protective immunity against a variety of infections depends on the amplification and differentiation of rare naïve antigen-specific CD4 and CD8 T cells. Recent evidence indicates that the clonotypic composition of the responding T-cell compartment has a critical role in the immune defense against pathogens. The present review compares and contrasts how naive CD4 and CD8 T cells recognize their cognate antigen, and discusses the factors that regulate the genesis and maintenance of the CD4 and CD8 T-cell receptor repertoire diversity.


Subject(s)
Adaptive Immunity/immunology , Antigens/immunology , T-Lymphocytes/immunology , Animals , Antigen Presentation/immunology , Clonal Deletion/immunology , Humans , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Major Histocompatibility Complex/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/cytology
13.
Immunology ; 130(1): 16-22, 2010 May.
Article in English | MEDLINE | ID: mdl-20331477

ABSTRACT

New vaccines based on soluble recombinant antigens (Ags) require adjuvants to elicit long-lasting protective humoral and cellular immunity. Despite the importance of CD4 T helper cells for the generation of long-lived memory B and CD8 T cells, the impact of adjuvants on CD4 T-cell responses is still poorly understood. Adjuvants are known to promote dendritic cell (DC) maturation and migration to secondary lymphoid organs where they present foreign peptides bound to class II major histocompatibility complex molecules (pMHCII) to naïve CD4 T cells. Random and imprecise rearrangements of genetic elements during thymic development ensure that a vast amount of T-cell receptors (TCRs) are present in the naïve CD4 T-cell repertoire. Ag-specific CD4 T cells are selected from this vast pre-immune repertoire based on the affinity of their TCR for pMHCII. Here, we review the evidence demonstrating a link between the adjuvant and the specificity and clonotypic diversity of the CD4 T-cell response, and consider the potential mechanisms at play.


Subject(s)
Adjuvants, Immunologic/pharmacology , CD4-Positive T-Lymphocytes/immunology , Receptors, Antigen, T-Cell/immunology , Vaccines/immunology , Animals , Antigen Presentation/immunology , Histocompatibility Antigens Class II/immunology , Humans
14.
J Immunol ; 184(2): 573-81, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20007533

ABSTRACT

The clonal composition of the T cell response can affect its ability to mediate infection control or to induce autoimmunity, but the mechanisms regulating the responding TCR repertoire remain poorly defined. In this study, we immunized mice with wild-type or mutated peptides displaying varying binding half-lives with MHC class II molecules to measure the impact of peptide-MHC class II stability on the clonal composition of the CD4 T cell response. We found that, although all peptides elicited similar T cell response size on immunization, the clonotypic diversity of the CD4 T cell response correlated directly with the half-life of the immunizing peptide. Peptides with short half-lives focused CD4 T cell response toward high-affinity clonotypes expressing restricted public TCR, whereas peptides with longer half-lives broadened CD4 T cell response by recruiting lower-affinity clonotypes expressing more diverse TCR. Peptides with longer half-lives did not cause the elimination of high-affinity clonotypes, and at a low dose, they also skewed CD4 T cell response toward higher-affinity clonotypes. Taken collectively, our results suggest the half-life of peptide-MHC class II complexes is the primary parameter that dictates the clonotypic diversity of the responding CD4 T cell compartment.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class II/immunology , Peptides/immunology , Animals , Autoimmunity , Clone Cells/immunology , Half-Life , Immunization , Mice , Mutation , Peptides/genetics , Protein Stability
15.
Immunol Rev ; 211: 255-68, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16824133

ABSTRACT

We consider four sequential phases in the evolution and consolidation of high affinity B-cell memory as it is regulated in a cognate manner by antigen-specific T-helper (Th) cells. Sequential developmental checkpoints control cell fate in each phase of the pathway in ways that still remain poorly understood. The cellular composition and molecular attributes of each checkpoint are of great interest, but they may vary substantially depending on the nature of the immune stimulus. How this stimulus cascades through the innate and then the adaptive immune responses defines initial effector mechanisms in both Th and B-cell compartments. The germinal center reaction controls memory B-cell development with roles for antigen presentation and cognate Th cell regulation in the establishment of the memory B-cell compartment. Antigen re-challenge rapidly promotes effector responses from the memory compartments of both Th and B cells. Importantly, re-challenge also expands and consolidates immune memory at the serological and cellular levels. We review recent advances in our understanding of memory B-cell evolution with emphasis on the regulatory checkpoints that control lymphocyte fate at each developmental juncture.


Subject(s)
B-Lymphocytes/immunology , Immunologic Memory/immunology , Animals , Antigen Presentation/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Evolution, Molecular , Immunologic Memory/genetics , Mice , T-Lymphocytes, Helper-Inducer/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...