Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
J Med Genet ; 61(3): 212-223, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-37788905

ABSTRACT

INTRODUCTION: Chediak-Higashi syndrome (CHS) is a rare autosomal recessive disorder characterised by partial oculocutaneous albinism, a bleeding diathesis, immunological dysfunction and neurological impairment. Bi-allelic loss-of-function variants in LYST cause CHS. LYST encodes the lysosomal trafficking regulator, a highly conserved 429 kDa cytoplasmic protein with an unknown function. METHODS: To further our understanding of the pathogenesis of CHS, we conducted clinical evaluations on individuals with CHS enrolled in our natural history study. Using genomic DNA Sanger sequencing, we identified novel pathogenic LYST variants. Additionally, we performed an extensive literature review to curate reported LYST variants and classified these novel and reported variants according to the American College of Medical Genetics/Association for Molecular Pathology variant interpretation guidelines. RESULTS: Our investigation unveiled 11 novel pathogenic LYST variants in eight patients with a clinical diagnosis of CHS, substantiated by the presence of pathognomonic giant intracellular granules. From these novel variants, together with a comprehensive review of the literature, we compiled a total of 147 variants in LYST, including 61 frameshift variants (41%), 44 nonsense variants (30%), 23 missense variants (16%), 13 splice site variants or small genomic deletions for which the coding effect is unknown (9%), 5 in-frame variants (3%) and 1 start-loss variant (1%). Notably, a genotype-phenotype correlation emerged, whereby individuals harbouring at least one missense or in-frame variant generally resulted in milder disease, while those with two nonsense or frameshift variants generally had more severe disease. CONCLUSION: The identification of novel pathogenic LYST variants and improvements in variant classification will provide earlier diagnoses and improved care to individuals with CHS.


Subject(s)
Chediak-Higashi Syndrome , Humans , Chediak-Higashi Syndrome/genetics , Chediak-Higashi Syndrome/diagnosis , Chediak-Higashi Syndrome/pathology , Mutation , Proteins/genetics , Mutation, Missense , Base Sequence , Vesicular Transport Proteins/genetics
3.
Biomed Pharmacother ; 168: 115178, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37890204

ABSTRACT

Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder that affects lysosome-related organelles, often leading to fatal pulmonary fibrosis (PF). The search for a treatment for HPS pulmonary fibrosis (HPSPF) is ongoing. S-MRI-1867, a dual cannabinoid receptor 1 (CB1R)/inducible nitric oxide synthase (iNOS) inhibitor, has shown great promise for the treatment of several fibrotic diseases, including HPSPF. In this study, we investigated the in vitro ADME characteristics of S-MRI-1867, as well as its pharmacokinetic (PK) properties in mice, rats, dogs, and monkeys. S-MRI-1867 showed low aqueous solubility (< 1 µg/mL), high plasma protein binding (>99%), and moderate to high metabolic stability. In its preclinical PK studies, S-MRI-1867 exhibited moderate to low plasma clearance (CLp) and high steady-state volume of distribution (Vdss) across all species. Despite the low solubility and P-gp efflux, S-MRI-1867 showed great permeability and metabolic stability leading to a moderate bioavailability (21-60%) across mouse, rat, dog, and monkey. Since the R form of MRI-1867 is CB1R-inactive, we investigated the potential conversion of S-MRI-1867 to R-MRI-1867 in mice and found that the chiral conversion was negligible. Furthermore, we developed and validated a PBPK model that adequately fits the PK profiles of S-MRI-1867 in mice, rats, dogs, and monkeys using various dosing regimens. We employed this PBPK model to simulate the human PK profiles of S-MRI-1867, enabling us to inform human dose selection and support the advancement of this promising drug candidate in the treatment of HPSPF.


Subject(s)
Hermanski-Pudlak Syndrome , Pulmonary Fibrosis , Humans , Rats , Mice , Animals , Dogs , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/drug therapy , Hermanski-Pudlak Syndrome/drug therapy , Research Design
4.
Mol Genet Metab Rep ; 36: 100990, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37448631

ABSTRACT

Microtubules are cytoskeletal polymers of ⍺/ß-tubulin heterodimers essential for a wide range of cellular processes. Pathogenic variations in microtubule-encoding genes (e.g., TUBB4B, which encodes the ß-4B tubulin isotype) are responsible for a wide spectrum of cerebral malformations, collectively referred to as "tubulinopathies." The phenotypic manifestation of TUBB4B-associated tubulinopathy is Leber congenital amaurosis with early-onset deafness (LCAEOD), an autosomal dominant syndrome characterized by photoreceptor and cochlear cell loss; all known patients have pathogenic variations in amino acid R391. We present the clinical and molecular genetics findings of a 16-year-old female with a de novo missense variant in exon 1 of TUBB4B, c.32 A > G (p.Gln11Arg; Q11R). In addition to hearing loss and hyperopia without retinal abnormalities, our proband presented with two phenotypes of unknown genetic etiology, i.e., renal tubular Fanconi Syndrome (FS) and hypophosphatemic rickets (HR). The Q11R variant expands the genetic basis of early sensory hearing loss; its consequences with respect to microtubule structure are described. A mechanistic explanation for the FS and rickets, involving microtubule-mediated translocation of transporter proteins to and from the apical membrane of renal proximal tubular cells, is proposed.

5.
Curr Opin Hematol ; 30(4): 144-151, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37254856

ABSTRACT

PURPOSE OF REVIEW: Chediak-Higashi syndrome is a rare autosomal recessive disorder characterized by congenital immunodeficiency, bleeding diathesis, pyogenic infection, partial oculocutaneous albinism, and progressive neurodegeneration. Treatment is hematopoietic stem cell transplantation or bone marrow transplantation; however, this does not treat the neurologic aspect of the disease. Mutations in the lysosomal trafficking regulator (LYST) gene were identified to be causative of Chediak-Higashi, but despite many analyses, there is little functional information about the LYST protein. This review serves to provide an update on the clinical manifestations and cellular defects of Chediak-Higashi syndrome. RECENT FINDINGS: More recent papers expand the neurological spectrum of disease in CHS, to include hereditary spastic paraplegia and parkinsonism. Granule size and distribution in NK cells have been investigated in relation to the location of mutations in LYST. Patients with mutations in the ARM/HEAT domain had markedly enlarged granules, but fewer in number. By contrast, patients with mutations in the BEACH domain had more numerous granules that were normal in size to slightly enlarged, but demonstrated markedly impaired polarization. The role of LYST in autophagosome formation has been highlighted in recent studies; LYST was defined to have a prominent role in autophagosome lysosome reformation for the maintenance of lysosomal homeostasis in neurons, while in retinal pigment epithelium cells, LYST deficiency was shown to lead to phagosome accumulation. SUMMARY: Despite CHS being a rare disease, investigation into LYST provides an understanding of basic vesicular fusion and fission. Understanding of these mechanisms may provide further insight into the function of LYST.


Subject(s)
Chediak-Higashi Syndrome , Humans , Chediak-Higashi Syndrome/diagnosis , Chediak-Higashi Syndrome/genetics , Chediak-Higashi Syndrome/therapy , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Lysosomes/metabolism , Bone Marrow Transplantation , Mutation
6.
Genet Med ; 25(6): 100833, 2023 06.
Article in English | MEDLINE | ID: mdl-37013900

ABSTRACT

PURPOSE: Myocardin-related transcription factor B (MRTFB) is an important transcriptional regulator, which promotes the activity of an estimated 300 genes but is not known to underlie a Mendelian disorder. METHODS: Probands were identified through the efforts of the Undiagnosed Disease Network. Because the MRTFB protein is highly conserved between vertebrate and invertebrate model organisms, we generated a humanized Drosophila model expressing the human MRTFB protein in the same spatial and temporal pattern as the fly gene. Actin binding assays were used to validate the effect of the variants on MRTFB. RESULTS: Here, we report 2 pediatric probands with de novo variants in MRTFB (p.R104G and p.A91P) and mild dysmorphic features, intellectual disability, global developmental delays, speech apraxia, and impulse control issues. Expression of the variants within wing tissues of a fruit fly model resulted in changes in wing morphology. The MRTFBR104G and MRTFBA91P variants also display a decreased level of actin binding within critical RPEL domains, resulting in increased transcriptional activity and changes in the organization of the actin cytoskeleton. CONCLUSION: The MRTFBR104G and MRTFBA91P variants affect the regulation of the protein and underlie a novel neurodevelopmental disorder. Overall, our data suggest that these variants act as a gain of function.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Animals , Child , Humans , Drosophila/genetics , Actins/genetics , Gain of Function Mutation , Transcription Factors/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Phenotype
8.
Am J Hum Genet ; 110(4): 663-680, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36965478

ABSTRACT

The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals.


Subject(s)
Alternative Splicing , DNA-Binding Proteins , Paraparesis, Spastic , Transcription Factors , Paraparesis, Spastic/genetics , Humans , DNA-Binding Proteins/genetics , Transcription Factors/genetics , HeLa Cells , Protein Isoforms/genetics , RNA-Seq , Male , Female , Pedigree , Alleles , Infant , Child, Preschool , Child , Adolescent , Protein Structure, Secondary , RNA, Small Nuclear/genetics
9.
Front Genet ; 14: 1072784, 2023.
Article in English | MEDLINE | ID: mdl-36968585

ABSTRACT

Introduction: Chediak-Higashi syndrome (CHS) is rare autosomal recessive disorder caused by bi-allelic variants in the Lysosomal Trafficking Regulator (LYST) gene. Diagnosis is established by the detection of pathogenic variants in LYST in combination with clinical evidence of disease. Conventional molecular genetic testing of LYST by genomic DNA (gDNA) Sanger sequencing detects the majority of pathogenic variants, but some remain undetected for several individuals clinically diagnosed with CHS. In this study, cDNA Sanger sequencing was pursued as a complementary method to identify variant alleles that are undetected by gDNA Sanger sequencing and to increase molecular diagnostic yield. Methods: Six unrelated individuals with CHS were clinically evaluated and included in this study. gDNA Sanger sequencing and cDNA Sanger sequencing were performed to identify pathogenic LYST variants. Results: Ten novel LYST alleles were identified, including eight nonsense or frameshift variants and two in-frame deletions. Six of these were identified by conventional gDNA Sanger sequencing; cDNA Sanger sequencing was required to identify the remaining variant alleles. Conclusion: By utilizing cDNA sequencing as a complementary technique to identify LYST variants, a complete molecular diagnosis was obtained for all six CHS patients. In this small CHS cohort, the molecular diagnostic yield was increased, and canonical splice site variants identified from gDNA Sanger sequencing were validated by cDNA sequencing. The identification of novel LYST alleles will aid in diagnosing patients and these molecular diagnoses will also lead to genetic counseling, access to services and treatments and clinical trials in the future.

10.
NPJ Genom Med ; 8(1): 4, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36765070

ABSTRACT

Autophagy regulates the degradation of damaged organelles and protein aggregates, and is critical for neuronal development, homeostasis, and maintenance, yet few neurodevelopmental disorders have been associated with pathogenic variants in genes encoding autophagy-related proteins. We report three individuals from two unrelated families with a neurodevelopmental disorder characterized by speech and motor impairment, and similar facial characteristics. Rare, conserved, bi-allelic variants were identified in ATG4D, encoding one of four ATG4 cysteine proteases important for autophagosome biogenesis, a hallmark of autophagy. Autophagosome biogenesis and induction of autophagy were intact in cells from affected individuals. However, studies evaluating the predominant substrate of ATG4D, GABARAPL1, demonstrated that three of the four ATG4D patient variants functionally impair ATG4D activity. GABARAPL1 is cleaved or "primed" by ATG4D and an in vitro GABARAPL1 priming assay revealed decreased priming activity for three of the four ATG4D variants. Furthermore, a rescue experiment performed in an ATG4 tetra knockout cell line, in which all four ATG4 isoforms were knocked out by gene editing, showed decreased GABARAPL1 priming activity for the two ATG4D missense variants located in the cysteine protease domain required for priming, suggesting that these variants impair the function of ATG4D. The clinical, bioinformatic, and functional data suggest that bi-allelic loss-of-function variants in ATG4D contribute to the pathogenesis of this syndromic neurodevelopmental disorder.

11.
Neuromuscul Disord ; 33(3): 257-262, 2023 03.
Article in English | MEDLINE | ID: mdl-36774715

ABSTRACT

MYH2 encodes MyHCIIa, a myosin heavy chain found in fast type 2A fibers. Pathogenic variants in this gene have previously been implicated in dominant and recessive forms of myopathy. Three individuals reported here are part of a family in which four generations of individuals are affected by a slowly progressive, predominantly proximal myopathy in an autosomal dominant inheritance pattern. Affected individuals in this family lacked classic features of an MYH2-associated myopathy such as congenital contractures and ophthalmoplegia. A novel variant, MYH2 c.5673+1G>C, was detected in the proband and subsequently found to segregate with disease in five additional family members. Further studies demonstrated that this variant affects splicing, resulting in novel transcripts. These data and muscle biopsy findings in the proband, indicate that this family's MYH2 variant is causative of their myopathy, adding to our understanding of the clinical and molecular characteristics of the disease.


Subject(s)
Contracture , Muscular Diseases , Humans , Muscular Diseases/genetics , Family , Muscles/pathology , Myosin Heavy Chains/genetics
12.
Cell Mol Life Sci ; 80(2): 53, 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36707427

ABSTRACT

Chediak-Higashi syndrome (CHS) is a rare, autosomal recessive disorder caused by biallelic mutations in the lysosomal trafficking regulator (LYST) gene. Even though enlarged lysosomes and/or lysosome-related organelles (LROs) are the typical cellular hallmarks of CHS, they have not been investigated in human neuronal models. Moreover, how and why the loss of LYST function causes a lysosome phenotype in cells has not been elucidated. We report that the LYST-deficient human neuronal model exhibits lysosome depletion accompanied by hyperelongated tubules extruding from enlarged autolysosomes. These results have also been recapitulated in neurons differentiated from CHS patients' induced pluripotent stem cells (iPSCs), validating our model system. We propose that LYST ensures the correct fission/scission of the autolysosome tubules during autophagic lysosome reformation (ALR), a crucial process to restore the number of free lysosomes after autophagy. We further demonstrate that LYST is recruited to the lysosome membrane, likely to facilitate the fission of autolysosome tubules. Together, our results highlight the key role of LYST in maintaining lysosomal homeostasis following autophagy and suggest that ALR dysregulation is likely associated with the neurodegenerative CHS phenotype.


Subject(s)
Chediak-Higashi Syndrome , Vesicular Transport Proteins , Humans , Vesicular Transport Proteins/genetics , Lysosomes/physiology , Organelles , Autophagy/physiology , Chediak-Higashi Syndrome/genetics , Neurons
13.
Brain ; 146(3): 968-976, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36181424

ABSTRACT

The aetiology of nodding syndrome remains unclear, and comprehensive genotyping and phenotyping data from patients remain sparse. Our objectives were to characterize the phenotype of patients with nodding syndrome, investigate potential contributors to disease aetiology, and evaluate response to immunotherapy. This cohort study investigated members of a single-family unit from Lamwo District, Uganda. The participants for this study were selected by the Ugandan Ministry of Health as representative for nodding syndrome and with a conducive family structure for genomic analyses. Of the eight family members who participated in the study at the National Institutes of Health (NIH) Clinical Center, three had nodding syndrome. The three affected patients were extensively evaluated with metagenomic sequencing for infectious pathogens, exome sequencing, spinal fluid immune analyses, neurometabolic and toxicology testing, continuous electroencephalography and neuroimaging. Five unaffected family members underwent a subset of testing for comparison. A distinctive interictal pattern of sleep-activated bursts of generalized and multifocal epileptiform discharges and slowing was observed in two patients. Brain imaging showed two patients had mild generalized cerebral atrophy, and both patients and unaffected family members had excessive metal deposition in the basal ganglia. Trace metal biochemical evaluation was normal. CSF was non-inflammatory and one patient had CSF-restricted oligoclonal bands. Onchocerca volvulus-specific antibodies were present in all patients and skin snips were negative for active onchocerciasis. Metagenomic sequencing of serum and CSF revealed hepatitis B virus in the serum of one patient. Vitamin B6 metabolites were borderline low in all family members and CSF pyridoxine metabolites were normal. Mitochondrial DNA testing was normal. Exome sequencing did not identify potentially causal candidate gene variants. Nodding syndrome is characterized by a distinctive pattern of sleep-activated epileptiform activity. The associated growth stunting may be due to hypothalamic dysfunction. Extensive testing years after disease onset did not clarify a causal aetiology. A trial of immunomodulation (plasmapheresis in two patients and intravenous immunoglobulin in one patient) was given without short-term effect, but longer-term follow-up was not possible to fully assess any benefit of this intervention.


Subject(s)
Nodding Syndrome , Onchocerciasis , United States , Humans , Cohort Studies , Immunomodulation , Genomics
14.
Front Genet ; 13: 936064, 2022.
Article in English | MEDLINE | ID: mdl-36046236

ABSTRACT

Hermansky-Pudlak syndrome (HPS) is a group of rare autosomal recessive disorders characterized by oculocutaneous albinism (OCA) and bleeding diathesis. To date, 11 HPS types have been reported (HPS-1 to HPS-11), each defined by disease-causing variants in specific genes. Variants in the HPS1 gene were found in approximately 15% of HPS patients, most of whom harbor the Puerto Rican founder mutation. In this study, we report six affected individuals from three nonconsanguineous families of Ashkenazi Jewish descent, who presented with OCA and multiple ecchymoses and had normal platelet number and size. Linkage analysis indicated complete segregation to HPS3. Sequencing of the whole coding region and the intron boundaries of HPS3 revealed a heterozygous c.1163+1G>A variant in all six patients. Long-range PCR amplification revealed that all affected individuals also carry a 14,761bp deletion that includes the 5'UTR and exon 1 of HPS3, encompassing regions with long interspersed nuclear elements. The frequency of the c.1163+1G>A splice site variant was found to be 1:200 in the Ashkenazi Jewish population, whereas the large deletion was not detected in 300 Ashkenazi Jewish controls. These results present a novel HPS3 deletion mutation and suggest that the prevalence of HPS-3 in Ashkenazi Jews is more common than previously thought.

15.
Mol Genet Metab ; 137(1-2): 187-191, 2022.
Article in English | MEDLINE | ID: mdl-36088816

ABSTRACT

Pulmonary fibrosis is a progressive and often fatal lung disease that manifests in most patients with Hermansky-Pudlak syndrome (HPS) type 1. Although the pathobiology of HPS pulmonary fibrosis is unknown, several studies highlight the pathogenic roles of different cell types, including type 2 alveolar epithelial cells, alveolar macrophages, fibroblasts, myofibroblasts, and immune cells. Despite the identification of the HPS1 gene and progress in understanding the pathobiology of HPS pulmonary fibrosis, specific treatment for HPS pulmonary fibrosis is not available, emphasizing the need to identify cellular and molecular targets and to develop therapeutic strategies for this devastating disease. This commentary summarizes recent advances and aims to provide insights into gene therapy for HPS pulmonary fibrosis.


Subject(s)
Hermanski-Pudlak Syndrome , Pulmonary Fibrosis , Humans , Hermanski-Pudlak Syndrome/genetics , Hermanski-Pudlak Syndrome/therapy , Hermanski-Pudlak Syndrome/metabolism , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/therapy , Lung/pathology , Genetic Therapy
16.
J Med Genet ; 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35790351

ABSTRACT

PURPOSE: To summarise the clinical, molecular and biochemical phenotype of mannosyl-oligosaccharide glucosidase-related congenital disorders of glycosylation (MOGS-CDG), which presents with variable clinical manifestations, and to analyse which clinical biochemical assay consistently supports diagnosis in individuals with bi-allelic variants in MOGS. METHODS: Phenotypic characterisation was performed through an international and multicentre collaboration. Genetic testing was done by exome sequencing and targeted arrays. Biochemical assays on serum and urine were performed to delineate the biochemical signature of MOGS-CDG. RESULTS: Clinical phenotyping revealed heterogeneity in MOGS-CDG, including neurological, immunological and skeletal phenotypes. Bi-allelic variants in MOGS were identified in 12 individuals from 11 families. The severity in each organ system was variable, without definite genotype correlation. Urine oligosaccharide analysis was consistently abnormal for all affected probands, whereas other biochemical analyses such as serum transferrin analysis was not consistently abnormal. CONCLUSION: The clinical phenotype of MOGS-CDG includes multisystemic involvement with variable severity. Molecular analysis, combined with biochemical testing, is important for diagnosis. In MOGS-CDG, urine oligosaccharide analysis via matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry can be used as a reliable biochemical test for screening and confirmation of disease.

17.
Respir Res ; 23(1): 167, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35739508

ABSTRACT

Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder characterized by improper biogenesis of lysosome-related organelles (LROs). Lung fibrosis is the leading cause of death among adults with HPS-1 and HPS-4 genetic types, which are associated with defects in the biogenesis of lysosome-related organelles complex-3 (BLOC-3), a guanine exchange factor (GEF) for a small GTPase, Rab32. LROs are not ubiquitously present in all cell types, and specific cells utilize LROs to accomplish dedicated functions. Fibroblasts are not known to contain LROs, and the function of BLOC-3 in fibroblasts is unclear. Here, we report that lung fibroblasts isolated from patients with HPS-1 have increased migration capacity. Silencing HPS-1 in normal lung fibroblasts similarly leads to increased migration. We also show that the increased migration is driven by elevated levels of Myosin IIB. Silencing HPS1 or RAB32 in normal lung fibroblasts leads to increased MYOSIN IIB levels. MYOSIN IIB is downstream of p38-MAPK, which is a known target of angiotensin receptor signaling. Treatment with losartan, an angiotensin receptor inhibitor, decreases MYOSIN IIB levels and impedes HPS lung fibroblast migration in vitro. Furthermore, pharmacologic inhibition of angiotensin receptor with losartan seemed to decrease migration of HPS lung fibroblasts in vivo in a zebrafish xenotransplantation model. Taken together, we demonstrate that BLOC-3 plays an important role in MYOSIN IIB regulation within lung fibroblasts and contributes to fibroblast migration.


Subject(s)
Hermanski-Pudlak Syndrome , Albinism , Animals , Cell Movement , Fibroblasts/metabolism , Hemorrhagic Disorders , Hermanski-Pudlak Syndrome/genetics , Humans , Losartan/metabolism , Lung/metabolism , Nonmuscle Myosin Type IIB/metabolism , Receptors, Angiotensin , Zebrafish
18.
J Inherit Metab Dis ; 45(5): 907-918, 2022 09.
Article in English | MEDLINE | ID: mdl-35490291

ABSTRACT

Living with an undiagnosed medical condition places a tremendous burden on patients, their families, and their healthcare providers. The Undiagnosed Diseases Program (UDP) was established at the National Institutes of Health (NIH) in 2008 with the primary goals of providing a diagnosis for patients with mysterious conditions and advancing medical knowledge about rare and common diseases. The program reviews applications from referring clinicians for cases that are considered undiagnosed despite a thorough evaluation. Those that are accepted receive clinical evaluations involving deep phenotyping and genetic testing that includes exome and genomic sequencing. Selected candidate gene variants are evaluated by collaborators using functional assays. Since its inception, the UDP has received more than 4500 applications and has completed evaluations on nearly 1300 individuals. Here we present six cases that exemplify the discovery of novel disease mechanisms, the importance of deep phenotyping for rare diseases, and how genetic diagnoses have led to appropriate treatment. The creation of the Undiagnosed Diseases Network (UDN) in 2014 has substantially increased the number of patients evaluated and allowed for greater opportunities for data sharing. Expansion to the Undiagnosed Diseases Network International (UDNI) has the possibility to extend this reach even farther. Together, networks of undiagnosed diseases programs are powerful tools to advance our knowledge of pathophysiology, accelerate accurate diagnoses, and improve patient care for patients with rare conditions.


Subject(s)
Undiagnosed Diseases , Exome , Humans , National Institutes of Health (U.S.) , Rare Diseases/diagnosis , Rare Diseases/genetics , United States , Uridine Diphosphate
19.
Respir Res ; 23(1): 112, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35509004

ABSTRACT

BACKGROUND: HPS-1 is a genetic type of Hermansky-Pudlak syndrome (HPS) with highly penetrant pulmonary fibrosis (HPSPF), a restrictive lung disease that is similar to idiopathic pulmonary fibrosis (IPF). Hps1ep/ep (pale ear) is a naturally occurring HPS-1 mouse model that exhibits high sensitivity to bleomycin-induced pulmonary fibrosis (PF). Traditional methods of administering bleomycin as an intratracheal (IT) route to induce PF in this model often lead to severe acute lung injury and high mortality rates, complicating studies focusing on pathobiological mechanisms or exploration of therapeutic options for HPSPF. METHODS: To develop a murine model of HPSPF that closely mimics the progression of human pulmonary fibrosis, we investigated the pulmonary effects of systemic delivery of bleomycin in Hps1ep/ep mice using a subcutaneous minipump and compared results to oropharyngeal delivery of bleomycin. RESULTS: Our study revealed that systemic delivery of bleomycin induced limited, acute inflammation that resolved. The distinct inflammatory phase preceded a slow, gradually progressive fibrogenesis that was shown to be both time-dependent and dose-dependent. The fibrosis phase exhibited characteristics that better resembles human disease with focal regions of fibrosis that were predominantly found in peribronchovascular areas and in subpleural regions; central lung areas contained relatively less fibrosis. CONCLUSION: This model provides a preclinical tool that will allow researchers to study the mechanism of pulmonary fibrosis in HPS and provide a platform for the development of therapeutics to treat HPSPF. This method can be applied on studies of IPF or other monogenic disorders that lead to pulmonary fibrosis.


Subject(s)
Hermanski-Pudlak Syndrome , Idiopathic Pulmonary Fibrosis , Albinism , Animals , Bleomycin/toxicity , Disease Models, Animal , Fibrosis , Hemorrhagic Disorders , Hermanski-Pudlak Syndrome/chemically induced , Hermanski-Pudlak Syndrome/genetics , Idiopathic Pulmonary Fibrosis/pathology , Lung , Mice
20.
Front Med (Lausanne) ; 8: 607720, 2021.
Article in English | MEDLINE | ID: mdl-34211981

ABSTRACT

Pulmonary fibrosis is characterized by abnormal interstitial extracellular matrix and cellular accumulations. Methods quantifying fibrosis severity in lung histopathology samples are semi-quantitative, subjective, and analyze only portions of sections. We sought to determine whether automated computerized imaging analysis shown to continuously measure fibrosis in mice could also be applied in human samples. A pilot study was conducted to analyze a small number of specimens from patients with Hermansky-Pudlak syndrome pulmonary fibrosis (HPSPF) or idiopathic pulmonary fibrosis (IPF). Digital images of entire lung histological serial sections stained with picrosirius red and alcian blue or anti-CD68 antibody were analyzed using dedicated software to automatically quantify fibrosis, collagen, and macrophage content. Automated fibrosis quantification based on parenchymal tissue density and fibrosis score measurements was compared to pulmonary function values or Ashcroft score. Automated fibrosis quantification of HPSPF lung explants was significantly higher than that of IPF lung explants or biopsies and was also significantly higher in IPF lung explants than in IPF biopsies. A high correlation coefficient was found between some automated quantification measurements and lung function values for the three sample groups. Automated quantification of collagen content in lung sections used for digital image analyses was similar in the three groups. CD68 immunolabeled cell measurements were significantly higher in HPSPF explants than in IPF biopsies. In conclusion, computerized image analysis provides access to accurate, reader-independent pulmonary fibrosis quantification in human histopathology samples. Fibrosis, collagen content, and immunostained cells can be automatically and individually quantified from serial sections. Robust automated digital image analysis of human lung samples enhances the available tools to quantify and study fibrotic lung disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...