Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
3.
Cancer Res ; 81(23): 5963-5976, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34645611

ABSTRACT

Colorectal adenocarcinoma is a leading cause of death worldwide, and immune infiltration in colorectal tumors has been recognized recently as an important pathophysiologic event. In this context, tumor-associated macrophages (TAM) have been related to chemoresistance to 5-fluorouracil (5-FU), the first-line chemotherapeutic agent used in treating colorectal cancers. Nevertheless, the details of this chemoresistance mechanism are still poorly elucidated. In the current study, we report that macrophages specifically overexpress dihydropyrimidine dehydrogenase (DPD) in hypoxia, leading to macrophage-induced chemoresistance to 5-FU via inactivation of the drug. Hypoxia-induced macrophage DPD expression was controlled by HIF2α. TAMs constituted the main contributors to DPD activity in human colorectal primary or secondary tumors, while cancer cells did not express significant levels of DPD. In addition, contrary to humans, macrophages in mice do not express DPD. Together, these findings shed light on the role of TAMs in promoting chemoresistance in colorectal cancers and identify potential new therapeutic targets. SIGNIFICANCE: Hypoxia induces HIF2α-mediated overexpression of dihydropyrimidine dehydrogenase in TAMs, leading to chemoresistance to 5-FU in colon cancers.


Subject(s)
Colorectal Neoplasms/drug therapy , Dihydrouracil Dehydrogenase (NADP)/metabolism , Drug Resistance, Neoplasm , Fluorouracil/pharmacology , Gene Expression Regulation, Enzymologic , Hypoxia/physiopathology , Tumor-Associated Macrophages/enzymology , Animals , Antimetabolites, Antineoplastic/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/pathology , Dihydrouracil Dehydrogenase (NADP)/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Tumor Cells, Cultured , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/pathology , Xenograft Model Antitumor Assays
4.
Biomaterials ; 208: 98-109, 2019 07.
Article in English | MEDLINE | ID: mdl-31005702

ABSTRACT

Macrophages have multiple roles in development, tissue homeostasis and repair and present a high degree of phenotypic plasticity embodied in the concept of polarization. One goal of macrophage biology field is to characterize these polarizations at the molecular level. To achieve this task, it is necessary to integrate how physical environment signals are interpreted by macrophages under immune stimulation. In this work, we study how a 3D scaffold obtained from polymerized fibrillar rat type I collagen modulates the polarizations of human macrophages and reveal that some traditionally used markers should be reassessed. We demonstrate that integrin ß2 is a regulator of STAT1 phosphorylation in response to IFNγ/LPS as well as responsible for the inhibition of ALOX15 expression in response to IL-4/IL-13 in 3D. Meanwhile, we also find that the CCL19/CCL20 ratio is reverted in 3D under IFNγ/LPS stimulation. 3D also induces the priming of the NLRP3 inflammasome resulting in an increased IL-1ß and IL-6 secretion. These results give the molecular basis for assessing collagen induced immunomodulation of human macrophages in various physiological and pathological contexts such as cancer.


Subject(s)
Collagen Type I/metabolism , Macrophages/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Cells, Cultured , Humans , Inflammasomes/drug effects , Inflammasomes/metabolism , Integrins/metabolism , Interferon-gamma/pharmacology , Interleukin-13/pharmacology , Interleukin-1beta/metabolism , Interleukin-4/pharmacology , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects , Macrophage Activation/physiology , Macrophages/drug effects , Phosphorylation/drug effects , STAT1 Transcription Factor/metabolism
5.
J Vis Exp ; (143)2019 01 07.
Article in English | MEDLINE | ID: mdl-30663715

ABSTRACT

Macrophages are innate immune cells involved in a number of physiological functions ranging from responses to infectious pathogens to tissue homeostasis. The various functions of these cells are related to their activation states, which is also called polarization. The precise molecular description of these various polarizations is a priority in the field of macrophage biology. It is currently acknowledged that a multidimensional approach is necessary to describe how polarization is controlled by environmental signals. In this report, we describe a protocol designed to obtain the proteomic signature of various polarizations in human macrophages. This protocol is based on a label-free quantification of macrophage protein expression obtained from in-gel fractionated and Lys C/trypsin-digested cellular lysis content. We also provide a protocol based on in-solution digestion and isoelectric focusing fractionation to use as an alternative. Because oxygen concentration is a relevant environmental parameter in tissues, we use this protocol to explore how atmospheric composition or a low oxygen environment affects the classification of macrophage polarization.


Subject(s)
Macrophage Activation/immunology , Macrophages/metabolism , Oxygen/metabolism , Proteomics/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...