Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncol Res ; 31(6): 899-916, 2023.
Article in English | MEDLINE | ID: mdl-37744271

ABSTRACT

The low survival rate of Kidney renal clear cell carcinoma (KIRC) patients is largely attributed to cisplatin resistance. Rather than focusing solely on individual proteins, exploring protein-protein interactions could offer greater insight into drug resistance. To this end, a series of in silico and in vitro experiments were conducted to identify hub genes in the intricate network of cisplatin resistance-related genes in KIRC chemotherapy. The genes involved in cisplatin resistance across KIRC were retrieved from the National Center for Biotechnology Information (NCBI) database using search terms as "Kidney renal clear cell carcinoma" and "Cisplatin resistance". The genes retrieved were analyzed for hub gene identification using the STRING database and Cytoscape tool. Expression and promoter methylation profiling of the hub genes was done using UALCAN, GEPIA, OncoDB, and HPA databases. Mutational, survival, functional enrichment, immune cell infiltration, and drug prediction analyses of the hub genes were performed using the cBioPortal, GEPIA, GSEA, TIMER, and DrugBank databases. Lastly, expression and methylation levels of the hub genes were validated on two cisplatin-resistant RCC cell lines (786-O and A-498) and a normal renal tubular epithelial cell line (HK-2) using two high throughput techniques, including targeted bisulfite sequencing (bisulfite-seq) and RT-qPCR. A total of 124 genes were identified as being associated with cisplatin resistance in KIRC. Out of these genes, MCL1, IGF1R, CCND1, and PTEN were identified as hub genes and were found to have significant (p < 0.05) variations in their mRNA and protein expressions and effects on the overall survival (OS) of the KIRC patients. Moreover, an aberrant promoter methylation pattern was found to be associated with the dysregulation of the hub genes. In addition to this, hub genes were also linked with different cisplatin resistance-causing pathways. Thus, hub genes can be targeted with Alvocidib, Estradiol, Tretinoin, Capsaicin, Dronabinol, Metribolone, Calcitriol, Acetaminophen, Acitretin, Cyclosporine, Azacitidine, Genistein, and Resveratrol drugs. As the pathogenesis of KIRC is complex, targeting hub genes and associated pathways involved in cisplatin resistance could bring a milestone change in the drug discovery and management of drug resistance, which might uplift overall survival among KIRC patients.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Cisplatin/pharmacology , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney
2.
Cureus ; 13(8): e16826, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34513419

ABSTRACT

Background In Pakistan, the neonatal mortality rate is 41 per 1,000 live births and birth asphyxia is one of the leading causes of neonatal mortality and morbidity. The goal of this study was to determine whether postnatal magnesium sulfate therapy can improve short- and long-term neurological outcomes in term or near-term neonates with moderate-to-severe birth asphyxia. Methodology This prospective double-blind randomized controlled trial was conducted in the Neonatology Department of the Children's Hospital & The Institute of Child Health, Lahore. A total of 62 neonates (31 in each group) were randomized to receive either three doses of magnesium sulfate infusion at 250 mg/kg per dose, 24 hours apart (treatment group), or three doses of injection 10% distilled water infusion at 3 mL/kg, 24 hours apart (placebo group). Both groups received similar supportive care. The neurodevelopmental assessment was done at six months of age using the ShaMaq Developmental Inventory. Results Demographic data such as gestational age, mean weight, age at presentation, gender, hypoxic-ischemic encephalopathy grade, mode of delivery, and the presence of seizures at presentation were comparable between both groups. In the magnesium sulfate group, statistically significant results were seen in terms of early seizure control (p = 0.001), early initiation of feed (p = 0.002), and shorter duration of hospital stay (p = 0.003). Moreover, the magnesium sulfate group had lower mortality compared to the control group, though it was not statistically significant (p = 0.390). There was no significant difference in terms of cranial ultrasound findings between the two groups (p = 0.783) at the time of discharge. Regarding the neurodevelopmental delay, there was no significant difference between the magnesium sulfate and control groups (p = 0.535). Conclusions Postnatal magnesium sulfate treatment improves short-term neurologic outcomes at discharge in term or near-term neonates with moderate-to-severe perinatal asphyxia. However, no difference was noted in the neurodevelopmental outcome at six months.

SELECTION OF CITATIONS
SEARCH DETAIL
...