Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Physiol ; 155(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-37000171

ABSTRACT

The timing and magnitude of force generation by a muscle depend on complex interactions in a compliant, contractile filament lattice. Perturbations in these interactions can result in cardiac muscle diseases. In this study, we address the fundamental challenge of connecting the temporal features of cardiac twitches to underlying rate constants and their perturbations associated with genetic cardiomyopathies. Current state-of-the-art metrics for characterizing the mechanical consequence of cardiac muscle disease do not utilize information embedded in the complete time course of twitch force. We pair dimension reduction techniques and machine learning methods to classify underlying perturbations that shape the timing of twitch force. To do this, we created a large twitch dataset using a spatially explicit Monte Carlo model of muscle contraction. Uniquely, we modified the rate constants of this model in line with mouse models of cardiac muscle disease and varied mutation penetrance. Ultimately, the results of this study show that machine learning models combined with biologically informed dimension reduction techniques can yield excellent classification accuracy of underlying muscle perturbations.


Subject(s)
Muscle Contraction , Muscle, Skeletal , Mice , Animals , Muscle, Skeletal/physiology , Muscle Contraction/physiology , Mutation
2.
Biophys J ; 120(18): 4079-4090, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34384761

ABSTRACT

During muscle contraction, myosin motors anchored to thick filaments bind to and slide actin thin filaments. These motors rely on energy derived from ATP, supplied, in part, by diffusion from the sarcoplasm to the interior of the lattice of actin and myosin filaments. The radial spacing of filaments in this lattice may change or remain constant during contraction. If the lattice is isovolumetric, it must expand when the muscle shortens. If, however, the spacing is constant or has a different pattern of axial and radial motion, then the lattice changes volume during contraction, driving fluid motion and assisting in the transport of molecules between the contractile lattice and the surrounding intracellular space. We first create an advective-diffusive-reaction flow model and show that the flow into and out of the sarcomere lattice would be significant in the absence of lattice expansion. Advective transport coupled to diffusion has the potential to substantially enhance metabolite exchange within the crowded sarcomere. Using time-resolved x-ray diffraction of contracting muscle, we next show that the contractile lattice is neither isovolumetric nor constant in spacing. Instead, lattice spacing is time varying, depends on activation, and can manifest as an effective time-varying Poisson ratio. The resulting fluid flow in the sarcomere lattice of synchronous insect flight muscles is even greater than expected for constant lattice spacing conditions. Lattice spacing depends on a variety of factors that produce radial force, including cross-bridges, titin-like molecules, and other structural proteins. Volume change and advective transport varies with the phase of muscle stimulation during periodic contraction but remains significant at all conditions. Although varying in magnitude, advective transport will occur in all cases in which the sarcomere is not isovolumetric. Akin to "breathing," advective-diffusive transport in sarcomeres is sufficient to promote metabolite exchange and may play a role in the regulation of contraction itself.


Subject(s)
Myofibrils , Sarcomeres , Actin Cytoskeleton , Muscle Contraction , Myosins
3.
Arch Biochem Biophys ; 706: 108923, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34029559

ABSTRACT

A highly organized and densely packed lattice of molecular machinery within the sarcomeres of muscle cells powers contraction. Although many of the proteins that drive contraction have been studied extensively, the mechanical impact of fluid shearing within the lattice of molecular machinery has received minimal attention. It was recently proposed that fluid flow augments substrate transport in the sarcomere, however, this analysis used analytical models of fluid flow in the molecular machinery that could not capture its full complexity. By building a finite element model of the sarcomere, we estimate the explicit flow field, and contrast it with analytical models. Our results demonstrate that viscous drag forces on sliding filaments are surprisingly small in contrast to the forces generated by single myosin molecular motors. This model also indicates that the energetic cost of fluid flow through viscous shearing with lattice proteins is likely minimal. The model also highlights a steep velocity gradient between sliding filaments and demonstrates that the maximal radial fluid velocity occurs near the tips of the filaments. To our knowledge, this is the first computational analysis of fluid flow within the highly structured sarcomere.


Subject(s)
Finite Element Analysis , Models, Biological , Myosins/physiology , Sarcomeres/physiology , Animals , Biomechanical Phenomena , Computer Simulation , Humans , Muscle Contraction/physiology , Myosins/ultrastructure , Rheology , Sarcomeres/ultrastructure , Thermodynamics , Viscosity
4.
Annu Rev Biophys ; 50: 373-400, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33637009

ABSTRACT

Two groundbreaking papers published in 1954 laid out the theory of the mechanism of muscle contraction based on force-generating interactions between myofilaments in the sarcomere that cause filaments to slide past one another during muscle contraction. The succeeding decades of research in muscle physiology have revealed a unifying interest: to understand the multiscale processes-from atom to organ-that govern muscle function. Such an understanding would have profound consequences for a vast array of applications, from developing new biomimetic technologies to treating heart disease. However, connecting structural and functional properties that are relevant at one spatiotemporal scale to those that are relevant at other scales remains a great challenge. Through a lens of multiscale dynamics, we review in this article current and historical research in muscle physiology sparked by the sliding filament theory.


Subject(s)
Muscle Contraction/physiology , Actin Cytoskeleton , Animals , Humans , Myofibrils/physiology , Myosins/physiology , Sarcomeres/physiology
5.
J Exp Biol ; 223(Pt 17)2020 09 03.
Article in English | MEDLINE | ID: mdl-32709625

ABSTRACT

Muscle function within an organism depends on the feedback between molecular and meter-scale processes. Although the motions of muscle's contractile machinery are well described in isolated preparations, only a handful of experiments have documented the kinematics of the lattice occurring when multi-scale interactions are fully intact. We used time-resolved X-ray diffraction to record the kinematics of the myofilament lattice within a normal operating context: the tethered flight of Manduca sexta As the primary flight muscles of M.sexta are synchronous, we used these results to reveal the timing of in vivo cross-bridge recruitment, which occurred 24 ms (s.d. 26) following activation. In addition, the thick filaments stretched an average of 0.75% (s.d. 0.32) and thin filaments stretched 1.11% (s.d. 0.65). In contrast to other in vivo preparations, lattice spacing changed an average of 2.72% (s.d. 1.47). Lattice dilation of this magnitude significantly affects shortening velocity and force generation, and filament stretching tunes force generation. While the kinematics were consistent within individual trials, there was extensive variation between trials. Using a mechanism-free machine learning model we searched for patterns within and across trials. Although lattice kinematics were predictable within trials, the model could not create predictions across trials. This indicates that the variability we see across trials may be explained by latent variables occurring in this naturally functioning system. The diverse kinematic combinations we documented mirror muscle's adaptability and may facilitate its robust function in unpredictable conditions.


Subject(s)
Myofibrils , Sarcomeres , Actin Cytoskeleton , Dilatation , Muscle Contraction , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL