Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
Annu Rev Immunol ; 42(1): 615-645, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38941608

ABSTRACT

The COVID-19 pandemic was caused by the recently emerged ß-coronavirus SARS-CoV-2. SARS-CoV-2 has had a catastrophic impact, resulting in nearly 7 million fatalities worldwide to date. The innate immune system is the first line of defense against infections, including the detection and response to SARS-CoV-2. Here, we discuss the innate immune mechanisms that sense coronaviruses, with a focus on SARS-CoV-2 infection and how these protective responses can become detrimental in severe cases of COVID-19, contributing to cytokine storm, inflammation, long-COVID, and other complications. We also highlight the complex cross talk among cytokines and the cellular components of the innate immune system, which can aid in viral clearance but also contribute to inflammatory cell death, cytokine storm, and organ damage in severe COVID-19 pathogenesis. Furthermore, we discuss how SARS-CoV-2 evades key protective innate immune mechanisms to enhance its virulence and pathogenicity, as well as how innate immunity can be therapeutically targeted as part of the vaccination and treatment strategy. Overall, we highlight how a comprehensive understanding of innate immune mechanisms has been crucial in the fight against SARS-CoV-2 infections and the development of novel host-directed immunotherapeutic strategies for various diseases.


Subject(s)
COVID-19 , Immunity, Innate , SARS-CoV-2 , Humans , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Cytokine Release Syndrome/immunology , Cytokines/metabolism , Animals , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/prevention & control , Immune Evasion
2.
BMC Biol ; 22(1): 122, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807188

ABSTRACT

BACKGROUND: The innate immune system serves as the first line of host defense. Transforming growth factor-ß-activated kinase 1 (TAK1) is a key regulator of innate immunity, cell survival, and cellular homeostasis. Because of its importance in immunity, several pathogens have evolved to carry TAK1 inhibitors. In response, hosts have evolved to sense TAK1 inhibition and induce robust lytic cell death, PANoptosis, mediated by the RIPK1-PANoptosome. PANoptosis is a unique innate immune inflammatory lytic cell death pathway initiated by an innate immune sensor and driven by caspases and RIPKs. While PANoptosis can be beneficial to clear pathogens, excess activation is linked to pathology. Therefore, understanding the molecular mechanisms regulating TAK1 inhibitor (TAK1i)-induced PANoptosis is central to our understanding of RIPK1 in health and disease. RESULTS: In this study, by analyzing results from a cell death-based CRISPR screen, we identified protein phosphatase 6 (PP6) holoenzyme components as regulators of TAK1i-induced PANoptosis. Loss of the PP6 enzymatic component, PPP6C, significantly reduced TAK1i-induced PANoptosis. Additionally, the PP6 regulatory subunits PPP6R1, PPP6R2, and PPP6R3 had redundant roles in regulating TAK1i-induced PANoptosis, and their combined depletion was required to block TAK1i-induced cell death. Mechanistically, PPP6C and its regulatory subunits promoted the pro-death S166 auto-phosphorylation of RIPK1 and led to a reduction in the pro-survival S321 phosphorylation. CONCLUSIONS: Overall, our findings demonstrate a key requirement for the phosphatase PP6 complex in the activation of TAK1i-induced, RIPK1-dependent PANoptosis, suggesting this complex could be therapeutically targeted in inflammatory conditions.


Subject(s)
Phosphoprotein Phosphatases , Receptor-Interacting Protein Serine-Threonine Kinases , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Humans , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Necroptosis , Immunity, Innate
4.
Nat Commun ; 15(1): 1739, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409108

ABSTRACT

Innate immunity provides the first line of defense through multiple mechanisms, including pyrogen production and cell death. While elevated body temperature during infection is beneficial to clear pathogens, heat stress (HS) can lead to inflammation and pathology. Links between pathogen exposure, HS, cytokine release, and inflammation have been observed, but fundamental innate immune mechanisms driving pathology during pathogen exposure and HS remain unclear. Here, we use multiple genetic approaches to elucidate innate immune pathways in infection or LPS and HS models. Our results show that bacteria and LPS robustly increase inflammatory cell death during HS that is dependent on caspase-1, caspase-11, caspase-8, and RIPK3 through the PANoptosis pathway. Caspase-7 also contributes to PANoptosis in this context. Furthermore, NINJ1 is an important executioner of this cell death to release inflammatory molecules, independent of other pore-forming executioner proteins, gasdermin D, gasdermin E, and MLKL. In an in vivo HS model, mortality is reduced by deleting NINJ1 and fully rescued by deleting key PANoptosis molecules. Our findings suggest that therapeutic strategies blocking NINJ1 or its upstream regulators to prevent PANoptosis may reduce the release of inflammatory mediators and benefit patients.


Subject(s)
Heat Stress Disorders , Lipopolysaccharides , Humans , Gasdermins , Cell Death , Inflammation/genetics , Caspases/genetics , Heat-Shock Response/genetics , Pyroptosis , Apoptosis , Nerve Growth Factors , Cell Adhesion Molecules, Neuronal
5.
Viruses ; 15(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38005819

ABSTRACT

Influenza A virus (IAV) continues to pose a significant global health threat, causing severe respiratory infections that result in substantial annual morbidity and mortality. Recent research highlights the pivotal role of innate immunity, cell death, and inflammation in exacerbating the severity of respiratory viral diseases. One key molecule in this process is ZBP1, a well-recognized innate immune sensor for IAV infection. Upon activation, ZBP1 triggers the formation of a PANoptosome complex containing ASC, caspase-8, and RIPK3, among other molecules, leading to inflammatory cell death, PANoptosis, and NLRP3 inflammasome activation for the maturation of IL-1ß and IL-18. However, the role for other molecules in this process requires further evaluation. In this study, we investigated the role of MLKL in regulating IAV-induced cell death and NLRP3 inflammasome activation. Our data indicate IAV induced inflammatory cell death through the ZBP1-PANoptosome, where caspases and RIPKs serve as core components. However, IAV-induced lytic cell death was only partially dependent on RIPK3 at later timepoints and was fully independent of MLKL throughout all timepoints tested. Additionally, NLRP3 inflammasome activation was unaffected in MLKL-deficient cells, establishing that MLKL and MLKL-dependent necroptosis do not act upstream of NLRP3 inflammasome activation, IL-1ß maturation, and lytic cell death during IAV infection.


Subject(s)
Influenza A virus , Influenza, Human , Humans , Apoptosis/physiology , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Influenza A virus/metabolism , Necroptosis , Cell Death , Protein Kinases/metabolism
6.
Commun Biol ; 6(1): 1071, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37864059

ABSTRACT

The COVID-19 pandemic, caused by the ß-coronavirus (ß-CoV) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to cause significant global morbidity and mortality. While vaccines have reduced the overall number of severe infections, there remains an incomplete understanding of viral entry and innate immune activation, which can drive pathology. Innate immune responses characterized by positive feedback between cell death and cytokine release can amplify the inflammatory cytokine storm during ß-CoV-mediated infection to drive pathology. Therefore, there remains an unmet need to understand innate immune processes in response to ß-CoV infections to identify therapeutic strategies. To address this gap, here we used an MHV model and developed a whole genome CRISPR-Cas9 screening approach to elucidate host molecules required for ß-CoV infection and inflammatory cell death, PANoptosis, in macrophages, a sentinel innate immune cell. Our screen was validated through the identification of the known MHV receptor Ceacam1 as the top hit, and its deletion significantly reduced viral replication due to loss of viral entry, resulting in a downstream reduction in MHV-induced cell death. Moreover, this screen identified several other host factors required for MHV infection-induced macrophage cell death. Overall, these findings demonstrate the feasibility and power of using genome-wide PANoptosis screens in macrophage cell lines to accelerate the discovery of key host factors in innate immune processes and suggest new targets for therapeutic development to prevent ß-CoV-induced pathology.


Subject(s)
COVID-19 , Pandemics , Humans , Immunity, Innate , SARS-CoV-2 , Cell Death
7.
iScience ; 26(6): 106938, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37324531

ABSTRACT

Transforming growth factor-ß-activated kinase 1 (TAK1) is a central regulator of innate immunity, cell death, inflammation, and cellular homeostasis. Therefore, many pathogens carry TAK1 inhibitors (TAK1i). As a host strategy to counteract this, inhibition or deletion of TAK1 induces spontaneous inflammatory cell death, PANoptosis, through the RIPK1-PANoptosome complex, containing the NLRP3 inflammasome and caspase-8/FADD/RIPK3 as integral components; however, PANoptosis also promotes pathological inflammation. Therefore, understanding molecular mechanisms that regulate TAK1i-induced cell death is essential. Here, we report a genome-wide CRISPR screen in macrophages that identified TAK1i-induced cell death regulators, including polypyrimidine tract-binding (PTB) protein 1 (PTBP1), a known regulator of RIPK1, and a previously unknown regulator RAVER1. RAVER1 blocked alternative splicing of Ripk1, and its genetic depletion inhibited TAK1i-induced, RIPK1-mediated inflammasome activation and PANoptosis. Overall, our CRISPR screen identified several positive regulators of PANoptosis. Moreover, our study highlights the utility of genome-wide CRISPR-Cas9 screens in myeloid cells for comprehensive characterization of complex cell death pathways to discover therapeutic targets.

8.
Cell ; 186(13): 2783-2801.e20, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37267949

ABSTRACT

Cytosolic innate immune sensors are critical for host defense and form complexes, such as inflammasomes and PANoptosomes, that induce inflammatory cell death. The sensor NLRP12 is associated with infectious and inflammatory diseases, but its activating triggers and roles in cell death and inflammation remain unclear. Here, we discovered that NLRP12 drives inflammasome and PANoptosome activation, cell death, and inflammation in response to heme plus PAMPs or TNF. TLR2/4-mediated signaling through IRF1 induced Nlrp12 expression, which led to inflammasome formation to induce maturation of IL-1ß and IL-18. The inflammasome also served as an integral component of a larger NLRP12-PANoptosome that drove inflammatory cell death through caspase-8/RIPK3. Deletion of Nlrp12 protected mice from acute kidney injury and lethality in a hemolytic model. Overall, we identified NLRP12 as an essential cytosolic sensor for heme plus PAMPs-mediated PANoptosis, inflammation, and pathology, suggesting that NLRP12 and molecules in this pathway are potential drug targets for hemolytic and inflammatory diseases.


Subject(s)
Inflammasomes , Pathogen-Associated Molecular Pattern Molecules , Animals , Mice , Inflammasomes/metabolism , Heme , Inflammation , Pyroptosis , Intracellular Signaling Peptides and Proteins
9.
Front Immunol ; 13: 1068230, 2022.
Article in English | MEDLINE | ID: mdl-36505497

ABSTRACT

Interleukin 1α (IL-1α) and IL-1ß are the founding members of the IL-1 cytokine family, and these innate immune inflammatory mediators are critically important in health and disease. Early studies on these molecules suggested that their expression was interdependent, with an initial genetic model of IL-1α depletion, the IL-1α KO mouse (Il1a-KOline1), showing reduced IL-1ß expression. However, studies using this line in models of infection and inflammation resulted in contrasting observations. To overcome the limitations of this genetic model, we have generated and characterized a new line of IL-1α KO mice (Il1a-KOline2) using CRISPR-Cas9 technology. In contrast to cells from Il1a-KOline1, where IL-1ß expression was drastically reduced, bone marrow-derived macrophages (BMDMs) from Il1a-KOline2 mice showed normal induction and activation of IL-1ß. Additionally, Il1a-KOline2 BMDMs showed normal inflammasome activation and IL-1ß expression in response to multiple innate immune triggers, including both pathogen-associated molecular patterns and pathogens. Moreover, using Il1a-KOline2 cells, we confirmed that IL-1α, independent of IL-1ß, is critical for the expression of the neutrophil chemoattractant KC/CXCL1. Overall, we report the generation of a new line of IL-1α KO mice and confirm functions for IL-1α independent of IL-1ß. Future studies on the unique functions of IL-1α and IL-1ß using these mice will be critical to identify new roles for these molecules in health and disease and develop therapeutic strategies.


Subject(s)
Inflammasomes , Interleukin-1alpha , Animals , Mice , Inflammasomes/genetics , Interleukin-1alpha/genetics , Interleukin-8 , Macrophages , Mice, Knockout
10.
NAR Cancer ; 4(4): zcac033, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36329783

ABSTRACT

Resistance to programmed cell death (PCD) is a hallmark of cancer. While some PCD components are prognostic in cancer, the roles of many molecules can be masked by redundancies and crosstalks between PCD pathways, impeding the development of targeted therapeutics. Recent studies characterizing these redundancies have identified PANoptosis, a unique innate immune-mediated inflammatory PCD pathway that integrates components from other PCD pathways. Here, we designed a systematic computational framework to determine the pancancer clinical significance of PANoptosis and identify targetable biomarkers. We found that high expression of PANoptosis genes was detrimental in low grade glioma (LGG) and kidney renal cell carcinoma (KIRC). ZBP1, ADAR, CASP2, CASP3, CASP4, CASP8 and GSDMD expression consistently had negative effects on prognosis in LGG across multiple survival models, while AIM2, CASP3, CASP4 and TNFRSF10 expression had negative effects for KIRC. Conversely, high expression of PANoptosis genes was beneficial in skin cutaneous melanoma (SKCM), with ZBP1, NLRP1, CASP8 and GSDMD expression consistently having positive prognostic effects. As a therapeutic proof-of-concept, we treated melanoma cells with combination therapy that activates ZBP1 and showed that this treatment induced PANoptosis. Overall, through our systematic framework, we identified and validated key innate immune biomarkers from PANoptosis which can be targeted to improve patient outcomes in cancers.

11.
Trends Immunol ; 43(12): 947-949, 2022 12.
Article in English | MEDLINE | ID: mdl-36404209

ABSTRACT

NLRP3 inflammasome regulation is essential for controlling cell death and inflammation. Mechanistic studies in murine cells suggest a two-step model of priming and activation with an indispensable role for NEK7. However, in a recent article in Immunity, Schmacke et al. report that, in humans, transcription-independent NLRP3 activation occurs by circumventing NEK7 via IKKß.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism , Mice, Inbred C57BL , Inflammasomes/metabolism , Protein Serine-Threonine Kinases
12.
Cell Rep ; 37(3): 109858, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34686350

ABSTRACT

Cell death provides host defense and maintains homeostasis. Zα-containing molecules are essential for these processes. Z-DNA binding protein 1 (ZBP1) activates inflammatory cell death, PANoptosis, whereas adenosine deaminase acting on RNA 1 (ADAR1) serves as an RNA editor to maintain homeostasis. Here, we identify and characterize ADAR1's interaction with ZBP1, defining its role in cell death regulation and tumorigenesis. Combining interferons (IFNs) and nuclear export inhibitors (NEIs) activates ZBP1-dependent PANoptosis. ADAR1 suppresses this PANoptosis by interacting with the Zα2 domain of ZBP1 to limit ZBP1 and RIPK3 interactions. Adar1fl/flLysMcre mice are resistant to development of colorectal cancer and melanoma, but deletion of the ZBP1 Zα2 domain restores tumorigenesis in these mice. In addition, treating wild-type mice with IFN-γ and the NEI KPT-330 regresses melanoma in a ZBP1-dependent manner. Our findings suggest that ADAR1 suppresses ZBP1-mediated PANoptosis, promoting tumorigenesis. Defining the functions of ADAR1 and ZBP1 in cell death is fundamental to informing therapeutic strategies for cancer and other diseases.


Subject(s)
Adenosine Deaminase/metabolism , Cell Transformation, Neoplastic/metabolism , Colorectal Neoplasms/enzymology , Melanoma, Experimental/enzymology , RNA-Binding Proteins/metabolism , Skin Neoplasms/enzymology , Adenosine Deaminase/genetics , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Death , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Hydrazines/pharmacology , Interferon-gamma/pharmacology , Male , Melanoma, Experimental/drug therapy , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice, Inbred C57BL , Mice, Knockout , Necroptosis , Pyroptosis , RNA-Binding Proteins/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Skin Neoplasms/drug therapy , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Triazoles/pharmacology
13.
Immunohorizons ; 5(7): 568-580, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290111

ABSTRACT

Resistance to cell death is a hallmark of cancer. Immunotherapy, particularly immune checkpoint blockade therapy, drives immune-mediated cell death and has greatly improved treatment outcomes for some patients with cancer, but it often fails clinically. Its success relies on the cytokines and cytotoxic functions of effector immune cells to bypass the resistance to cell death and eliminate cancer cells. However, the specific cytokines capable of inducing cell death in tumors and the mechanisms that connect cytokines to cell death across cancer cell types remain unknown. In this study, we analyzed expression of several cytokines that are modulated in tumors and found correlations between cytokine expression and mortality. Of several cytokines tested for their ability to kill cancer cells, only TNF-α and IFN-γ together were able to induce cell death in 13 distinct human cancer cell lines derived from colon and lung cancer, melanoma, and leukemia. Further evaluation of the specific programmed cell death pathways activated by TNF-α and IFN-γ in these cancer lines identified PANoptosis, a form of inflammatory cell death that was previously shown to be activated by contemporaneous engagement of components from pyroptosis, apoptosis, and/or necroptosis. Specifically, TNF-α and IFN-γ triggered activation of gasdermin D, gasdermin E, caspase-8, caspase-3, caspase-7, and MLKL. Furthermore, the intratumoral administration of TNF-α and IFN-γ suppressed the growth of transplanted xenograft tumors in an NSG mouse model. Overall, this study shows that PANoptosis, induced by synergism of TNF-α and IFN-γ, is an important mechanism to kill cancer cells and suppress tumor growth that could be therapeutically targeted.


Subject(s)
Immunogenic Cell Death/immunology , Interferon-gamma/metabolism , Neoplasms/immunology , Tumor Necrosis Factor-alpha/metabolism , Animals , Cell Line, Tumor , Humans , Mice , Neoplasms/pathology , Signal Transduction/immunology , Xenograft Model Antitumor Assays
14.
mBio ; 12(3): e0105921, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34154417

ABSTRACT

Burkholderia infections can result in serious diseases with high mortality, such as melioidosis, and they are difficult to treat with antibiotics. Innate immunity is critical for cell-autonomous clearance of intracellular pathogens like Burkholderia by regulating programmed cell death. Inflammasome-dependent inflammatory cytokine release and cell death contribute to host protection against Burkholderia pseudomallei and Burkholderia thailandensis; however, the contribution of apoptosis and necroptosis to protection is not known. Here, we found that bone marrow-derived macrophages (BMDMs) lacking key components of pyroptosis died via apoptosis during infection. BMDMs lacking molecules required for pyroptosis, apoptosis, and necroptosis (PANoptosis), however, were significantly resistant to B. thailandensis-induced cell death until later stages of infection. Consequently, PANoptosis-deficient BMDMs failed to limit B. thailandensis-induced cell-cell fusion, which permits increased intercellular spread and replication compared to wild-type or pyroptosis-deficient BMDMs. Respiratory B. thailandensis infection resulted in higher mortality in PANoptosis-deficient mice than in pyroptosis-deficient mice, indicating that, in the absence of pyroptosis, apoptosis is essential for efficient control of infection in vivo. Together, these findings suggest both pyroptosis and apoptosis are necessary for host-mediated control of Burkholderia infection. IMPORTANCEBurkholderia infections result in a high degree of mortality when left untreated; therefore, understanding the host immune response required to control infection is critical. In this study, we found a hierarchical cell death program utilized by infected cells to disrupt the intracellular niche of Burkholderia thailandensis, which limits bacterial intercellular spread, host cell-cell fusion, and bacterial replication. In macrophages, combined loss of key PANoptosis components results in extensive B. thailandensis infection-induced cell-cell fusion, bacterial replication, and increased cell death at later stages of infection compared with both wild-type (WT) and pyroptosis-deficient cells. During respiratory infection, mortality was increased in PANoptosis-deficient mice compared to pyroptosis-deficient mice, identifying an essential role for multiple cell death pathways in controlling B. thailandensis infection. These findings advance our understanding of the physiological role of programmed cell death in controlling Burkholderia infection.


Subject(s)
Apoptosis/immunology , Burkholderia Infections/immunology , Burkholderia/pathogenicity , Immunity, Innate , Macrophages/microbiology , Macrophages/pathology , Animals , Burkholderia/immunology , Caspases/classification , Caspases/genetics , Caspases/immunology , Female , Male , Mice , Necroptosis/immunology , Pyroptosis/immunology
15.
J Immunol ; 207(1): 115-124, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34145059

ABSTRACT

Cellular stress can induce cytoplasmic ribonucleoprotein complexes called stress granules that allow the cells to survive. Stress granules are also central to cellular responses to infections, in which they can act as platforms for viral sensing or modulate innate immune signaling through pattern recognition receptors. However, the effect of innate immune signaling on stress granules is poorly understood. In this study, we report that prior induction of innate immune signaling through TLRs inhibited stress granule assembly in a TLR ligand dose-dependent manner in murine bone marrow-derived macrophages. Time course analysis suggests that TLR stimulation can reverse stress granule assembly even after it has begun. Additionally, both MYD88- and TRIF-mediated TLR signaling inhibited stress granule assembly in response to endoplasmic reticulum stress in bone marrow-derived macrophages and the chemotherapeutic drug oxaliplatin in murine B16 melanoma cells. This inhibition was not due to a decrease in expression of the critical stress granule proteins G3BP1 and DDX3X and was independent of IRAK1/4, JNK, ERK and P38 kinase activity but dependent on IKK complex kinase activity. Overall, we have identified the TLR-IKK complex signaling axis as a regulator of stress granule assembly-disassembly dynamics, highlighting cross-talk between processes that are critical in health and disease.


Subject(s)
I-kappa B Kinase/immunology , Immunity, Innate/immunology , Stress Granules/immunology , Toll-Like Receptors/immunology , Animals , Cells, Cultured , I-kappa B Kinase/genetics , Mice , Mice, Knockout , Signal Transduction/immunology
16.
J Biol Chem ; 296: 100579, 2021.
Article in English | MEDLINE | ID: mdl-33766561

ABSTRACT

Viruses and hosts have coevolved for millions of years, leading to the development of complex host-pathogen interactions. Influenza A virus (IAV) causes severe pulmonary pathology and is a recurrent threat to human health. Innate immune sensing of IAV triggers a complex chain of host responses. IAV has adapted to evade host defense mechanisms, and the host has coevolved to counteract these evasion strategies. However, the molecular mechanisms governing the balance between host defense and viral immune evasion is poorly understood. Here, we show that the host protein DEAD-box helicase 3 X-linked (DDX3X) is critical to orchestrate a multifaceted antiviral innate response during IAV infection, coordinating the activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, assembly of stress granules, and type I interferon (IFN) responses. DDX3X activated the NLRP3 inflammasome in response to WT IAV, which carries the immune evasive nonstructural protein 1 (NS1). However, in the absence of NS1, DDX3X promoted the formation of stress granules that facilitated efficient activation of type I IFN signaling. Moreover, induction of DDX3X-containing stress granules by external stimuli after IAV infection led to increased type I IFN signaling, suggesting that NS1 actively inhibits stress granule-mediated host responses and DDX3X-mediated NLRP3 activation counteracts this action. Furthermore, the loss of DDX3X expression in myeloid cells caused severe pulmonary pathogenesis and morbidity in IAV-infected mice. Together, our findings show that DDX3X orchestrates alternate modes of innate host defense which are critical to fight against NS1-mediated immune evasion strategies during IAV infection.


Subject(s)
DEAD-box RNA Helicases/metabolism , Immunity, Innate , Inflammasomes/metabolism , Influenza A virus/physiology , Interferon Type I/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Influenza A virus/immunology , Mice
18.
Cancer Res ; 81(9): 2358-2372, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33619117

ABSTRACT

Macrophages are critical mediators of tissue homeostasis, cell proliferation, and tumor metastasis. Tumor-associated macrophages (TAM) are generally associated with tumor-promoting immunosuppressive functions in solid tumors. Here, we examined the transcriptional landscape of adaptor molecules downstream of Toll-like receptors in human cancers and found that higher expression of MYD88 correlated with tumor progression. In murine melanoma, MyD88, but not Trif, was essential for tumor progression, angiogenesis, and maintaining the immunosuppressive phenotype of TAMs. In addition, MyD88 expression in myeloid cells drove melanoma progression. The MyD88/IL1 receptor (IL1R) axis regulated programmed cell death (PD)-1 expression on TAMs by promoting recruitment of NF-κBp65 to the Pdcd1 promoter. Furthermore, a combinatorial immunotherapy approach combining the MyD88 inhibitor with anti-PD-1 blockade elicited strong antitumor effects. Thus, the MyD88/IL1R axis maintains the immunosuppressive function of TAMs and promotes tumor growth by regulating PD-1 expression. SIGNIFICANCE: These findings indicate that MyD88 regulates TAM-immunosuppressive activity, suggesting that macrophage-mediated immunotherapy combining MYD88 inhibitors with PD-1 blockade could result in better treatment outcomes in a wide variety of cancers. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2358/F1.large.jpg.


Subject(s)
Immune Tolerance/genetics , Melanoma/immunology , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/metabolism , Programmed Cell Death 1 Receptor/metabolism , Receptors, Interleukin-1/metabolism , Signal Transduction/genetics , Skin Neoplasms/immunology , Tumor-Associated Macrophages/immunology , Animals , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Melanoma/pathology , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Receptors, Interleukin-1/genetics , Skin Neoplasms/pathology
19.
Nat Commun ; 12(1): 496, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479228

ABSTRACT

Chronic inflammation during many diseases is associated with bone loss. While interferons (IFNs) are often inhibitory to osteoclast formation, the complex role that IFN and interferon-stimulated genes (ISGs) play in osteoimmunology during inflammatory diseases is still poorly understood. We show that mice deficient in IFN signaling components including IFN alpha and beta receptor 1 (IFNAR1), interferon regulatory factor 1 (IRF1), IRF9, and STAT1 each have reduced bone density and increased osteoclastogenesis compared to wild type mice. The IFN-inducible guanylate-binding proteins (GBPs) on mouse chromosome 3 (GBP1, GBP2, GBP3, GBP5, GBP7) are required to negatively regulate age-associated bone loss and osteoclastogenesis. Mechanistically, GBP2 and GBP5 both negatively regulate in vitro osteoclast differentiation, and loss of GBP5, but not GBP2, results in greater age-associated bone loss in mice. Moreover, mice deficient in GBP5 or chromosome 3 GBPs have greater LPS-mediated inflammatory bone loss compared to wild type mice. Overall, we find that GBP5 contributes to restricting age-associated and inflammation-induced bone loss by negatively regulating osteoclastogenesis.


Subject(s)
Bone Resorption/metabolism , GTP-Binding Proteins/metabolism , Interferons/metabolism , Osteoclasts/metabolism , Osteogenesis/physiology , Age Factors , Animals , Bone Resorption/genetics , Cell Differentiation/genetics , Cell Fusion , Cells, Cultured , GTP-Binding Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Osteoclasts/cytology , Osteogenesis/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...