Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters











Publication year range
1.
Trends Immunol ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39327205

ABSTRACT

Cancers hijack the nervous system for growth and spread. Thus, disrupting neuron-cancer crosstalk holds promise for blocking metastasis. Recently, Padmanaban et al. reported new therapeutic targets and showed that breast cancer cells activate sensory neurons to secrete the neuropeptide substance P (SP), leading to single-strand (ss)RNA release and noncanonical Toll-like receptor (TLR)7 signaling that drives metastasis.

2.
Viruses ; 16(8)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39205235

ABSTRACT

The innate immune system serves as the first line of defense against ß-coronaviruses (ß-CoVs), a family of viruses that includes SARS-CoV-2. Viral sensing via pattern recognition receptors triggers inflammation and cell death, which are essential components of the innate immune response that facilitate viral clearance. However, excessive activation of the innate immune system and inflammatory cell death can result in uncontrolled release of proinflammatory cytokines, resulting in cytokine storm and pathology. PANoptosis, innate immune, inflammatory cell death initiated by innate immune sensors and driven by caspases and RIPKs through PANoptosome complexes, has been implicated in the pathology of viral infections. Therefore, understanding the molecular mechanisms regulating PANoptosis in response to ß-CoV infection is critical for identifying new therapeutic targets that can mitigate disease severity. In the current study, we analyzed findings from a cell death-based CRISPR screen with archetypal ß-CoV mouse hepatitis virus (MHV) as the trigger to characterize host molecules required for inflammatory cell death. As a result, we identified SMARCA4, a chromatin regulator, as a putative host factor required for PANoptosis in response to MHV. Furthermore, we observed that gRNA-mediated deletion of Smarca4 inhibited MHV-induced PANoptotic cell death in macrophages. These findings have potential translational and clinical implications for the advancement of treatment strategies for ß-CoVs and other infections.


Subject(s)
Cell Death , Murine hepatitis virus , Transcription Factors , Animals , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Immunity, Innate , Inflammation/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , Humans , Chromatin/metabolism , Chromatin/genetics , Macrophages/virology , Macrophages/immunology , Macrophages/metabolism , Necroptosis , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Host-Pathogen Interactions
3.
Annu Rev Immunol ; 42(1): 615-645, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38941608

ABSTRACT

The COVID-19 pandemic was caused by the recently emerged ß-coronavirus SARS-CoV-2. SARS-CoV-2 has had a catastrophic impact, resulting in nearly 7 million fatalities worldwide to date. The innate immune system is the first line of defense against infections, including the detection and response to SARS-CoV-2. Here, we discuss the innate immune mechanisms that sense coronaviruses, with a focus on SARS-CoV-2 infection and how these protective responses can become detrimental in severe cases of COVID-19, contributing to cytokine storm, inflammation, long-COVID, and other complications. We also highlight the complex cross talk among cytokines and the cellular components of the innate immune system, which can aid in viral clearance but also contribute to inflammatory cell death, cytokine storm, and organ damage in severe COVID-19 pathogenesis. Furthermore, we discuss how SARS-CoV-2 evades key protective innate immune mechanisms to enhance its virulence and pathogenicity, as well as how innate immunity can be therapeutically targeted as part of the vaccination and treatment strategy. Overall, we highlight how a comprehensive understanding of innate immune mechanisms has been crucial in the fight against SARS-CoV-2 infections and the development of novel host-directed immunotherapeutic strategies for various diseases.


Subject(s)
COVID-19 , Immunity, Innate , SARS-CoV-2 , Humans , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Cytokine Release Syndrome/immunology , Cytokines/metabolism , Animals , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/prevention & control , Immune Evasion
4.
BMC Biol ; 22(1): 122, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807188

ABSTRACT

BACKGROUND: The innate immune system serves as the first line of host defense. Transforming growth factor-ß-activated kinase 1 (TAK1) is a key regulator of innate immunity, cell survival, and cellular homeostasis. Because of its importance in immunity, several pathogens have evolved to carry TAK1 inhibitors. In response, hosts have evolved to sense TAK1 inhibition and induce robust lytic cell death, PANoptosis, mediated by the RIPK1-PANoptosome. PANoptosis is a unique innate immune inflammatory lytic cell death pathway initiated by an innate immune sensor and driven by caspases and RIPKs. While PANoptosis can be beneficial to clear pathogens, excess activation is linked to pathology. Therefore, understanding the molecular mechanisms regulating TAK1 inhibitor (TAK1i)-induced PANoptosis is central to our understanding of RIPK1 in health and disease. RESULTS: In this study, by analyzing results from a cell death-based CRISPR screen, we identified protein phosphatase 6 (PP6) holoenzyme components as regulators of TAK1i-induced PANoptosis. Loss of the PP6 enzymatic component, PPP6C, significantly reduced TAK1i-induced PANoptosis. Additionally, the PP6 regulatory subunits PPP6R1, PPP6R2, and PPP6R3 had redundant roles in regulating TAK1i-induced PANoptosis, and their combined depletion was required to block TAK1i-induced cell death. Mechanistically, PPP6C and its regulatory subunits promoted the pro-death S166 auto-phosphorylation of RIPK1 and led to a reduction in the pro-survival S321 phosphorylation. CONCLUSIONS: Overall, our findings demonstrate a key requirement for the phosphatase PP6 complex in the activation of TAK1i-induced, RIPK1-dependent PANoptosis, suggesting this complex could be therapeutically targeted in inflammatory conditions.


Subject(s)
Phosphoprotein Phosphatases , Receptor-Interacting Protein Serine-Threonine Kinases , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Humans , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Necroptosis , Immunity, Innate
5.
Nat Commun ; 15(1): 1739, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409108

ABSTRACT

Innate immunity provides the first line of defense through multiple mechanisms, including pyrogen production and cell death. While elevated body temperature during infection is beneficial to clear pathogens, heat stress (HS) can lead to inflammation and pathology. Links between pathogen exposure, HS, cytokine release, and inflammation have been observed, but fundamental innate immune mechanisms driving pathology during pathogen exposure and HS remain unclear. Here, we use multiple genetic approaches to elucidate innate immune pathways in infection or LPS and HS models. Our results show that bacteria and LPS robustly increase inflammatory cell death during HS that is dependent on caspase-1, caspase-11, caspase-8, and RIPK3 through the PANoptosis pathway. Caspase-7 also contributes to PANoptosis in this context. Furthermore, NINJ1 is an important executioner of this cell death to release inflammatory molecules, independent of other pore-forming executioner proteins, gasdermin D, gasdermin E, and MLKL. In an in vivo HS model, mortality is reduced by deleting NINJ1 and fully rescued by deleting key PANoptosis molecules. Our findings suggest that therapeutic strategies blocking NINJ1 or its upstream regulators to prevent PANoptosis may reduce the release of inflammatory mediators and benefit patients.


Subject(s)
Heat Stress Disorders , Lipopolysaccharides , Humans , Gasdermins , Cell Death , Inflammation/genetics , Caspases/genetics , Heat-Shock Response/genetics , Pyroptosis , Apoptosis , Nerve Growth Factors , Cell Adhesion Molecules, Neuronal
6.
Viruses ; 15(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38005819

ABSTRACT

Influenza A virus (IAV) continues to pose a significant global health threat, causing severe respiratory infections that result in substantial annual morbidity and mortality. Recent research highlights the pivotal role of innate immunity, cell death, and inflammation in exacerbating the severity of respiratory viral diseases. One key molecule in this process is ZBP1, a well-recognized innate immune sensor for IAV infection. Upon activation, ZBP1 triggers the formation of a PANoptosome complex containing ASC, caspase-8, and RIPK3, among other molecules, leading to inflammatory cell death, PANoptosis, and NLRP3 inflammasome activation for the maturation of IL-1ß and IL-18. However, the role for other molecules in this process requires further evaluation. In this study, we investigated the role of MLKL in regulating IAV-induced cell death and NLRP3 inflammasome activation. Our data indicate IAV induced inflammatory cell death through the ZBP1-PANoptosome, where caspases and RIPKs serve as core components. However, IAV-induced lytic cell death was only partially dependent on RIPK3 at later timepoints and was fully independent of MLKL throughout all timepoints tested. Additionally, NLRP3 inflammasome activation was unaffected in MLKL-deficient cells, establishing that MLKL and MLKL-dependent necroptosis do not act upstream of NLRP3 inflammasome activation, IL-1ß maturation, and lytic cell death during IAV infection.


Subject(s)
Influenza A virus , Influenza, Human , Humans , Apoptosis/physiology , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Influenza A virus/metabolism , Necroptosis , Cell Death , Protein Kinases/metabolism
7.
Commun Biol ; 6(1): 1071, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37864059

ABSTRACT

The COVID-19 pandemic, caused by the ß-coronavirus (ß-CoV) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to cause significant global morbidity and mortality. While vaccines have reduced the overall number of severe infections, there remains an incomplete understanding of viral entry and innate immune activation, which can drive pathology. Innate immune responses characterized by positive feedback between cell death and cytokine release can amplify the inflammatory cytokine storm during ß-CoV-mediated infection to drive pathology. Therefore, there remains an unmet need to understand innate immune processes in response to ß-CoV infections to identify therapeutic strategies. To address this gap, here we used an MHV model and developed a whole genome CRISPR-Cas9 screening approach to elucidate host molecules required for ß-CoV infection and inflammatory cell death, PANoptosis, in macrophages, a sentinel innate immune cell. Our screen was validated through the identification of the known MHV receptor Ceacam1 as the top hit, and its deletion significantly reduced viral replication due to loss of viral entry, resulting in a downstream reduction in MHV-induced cell death. Moreover, this screen identified several other host factors required for MHV infection-induced macrophage cell death. Overall, these findings demonstrate the feasibility and power of using genome-wide PANoptosis screens in macrophage cell lines to accelerate the discovery of key host factors in innate immune processes and suggest new targets for therapeutic development to prevent ß-CoV-induced pathology.


Subject(s)
COVID-19 , Pandemics , Humans , Immunity, Innate , SARS-CoV-2 , Cell Death
8.
iScience ; 26(6): 106938, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37324531

ABSTRACT

Transforming growth factor-ß-activated kinase 1 (TAK1) is a central regulator of innate immunity, cell death, inflammation, and cellular homeostasis. Therefore, many pathogens carry TAK1 inhibitors (TAK1i). As a host strategy to counteract this, inhibition or deletion of TAK1 induces spontaneous inflammatory cell death, PANoptosis, through the RIPK1-PANoptosome complex, containing the NLRP3 inflammasome and caspase-8/FADD/RIPK3 as integral components; however, PANoptosis also promotes pathological inflammation. Therefore, understanding molecular mechanisms that regulate TAK1i-induced cell death is essential. Here, we report a genome-wide CRISPR screen in macrophages that identified TAK1i-induced cell death regulators, including polypyrimidine tract-binding (PTB) protein 1 (PTBP1), a known regulator of RIPK1, and a previously unknown regulator RAVER1. RAVER1 blocked alternative splicing of Ripk1, and its genetic depletion inhibited TAK1i-induced, RIPK1-mediated inflammasome activation and PANoptosis. Overall, our CRISPR screen identified several positive regulators of PANoptosis. Moreover, our study highlights the utility of genome-wide CRISPR-Cas9 screens in myeloid cells for comprehensive characterization of complex cell death pathways to discover therapeutic targets.

9.
Cell ; 186(13): 2783-2801.e20, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37267949

ABSTRACT

Cytosolic innate immune sensors are critical for host defense and form complexes, such as inflammasomes and PANoptosomes, that induce inflammatory cell death. The sensor NLRP12 is associated with infectious and inflammatory diseases, but its activating triggers and roles in cell death and inflammation remain unclear. Here, we discovered that NLRP12 drives inflammasome and PANoptosome activation, cell death, and inflammation in response to heme plus PAMPs or TNF. TLR2/4-mediated signaling through IRF1 induced Nlrp12 expression, which led to inflammasome formation to induce maturation of IL-1ß and IL-18. The inflammasome also served as an integral component of a larger NLRP12-PANoptosome that drove inflammatory cell death through caspase-8/RIPK3. Deletion of Nlrp12 protected mice from acute kidney injury and lethality in a hemolytic model. Overall, we identified NLRP12 as an essential cytosolic sensor for heme plus PAMPs-mediated PANoptosis, inflammation, and pathology, suggesting that NLRP12 and molecules in this pathway are potential drug targets for hemolytic and inflammatory diseases.


Subject(s)
Inflammasomes , Pathogen-Associated Molecular Pattern Molecules , Animals , Mice , Inflammasomes/metabolism , Heme , Inflammation , Pyroptosis , Intracellular Signaling Peptides and Proteins
10.
Front Immunol ; 13: 1068230, 2022.
Article in English | MEDLINE | ID: mdl-36505497

ABSTRACT

Interleukin 1α (IL-1α) and IL-1ß are the founding members of the IL-1 cytokine family, and these innate immune inflammatory mediators are critically important in health and disease. Early studies on these molecules suggested that their expression was interdependent, with an initial genetic model of IL-1α depletion, the IL-1α KO mouse (Il1a-KOline1), showing reduced IL-1ß expression. However, studies using this line in models of infection and inflammation resulted in contrasting observations. To overcome the limitations of this genetic model, we have generated and characterized a new line of IL-1α KO mice (Il1a-KOline2) using CRISPR-Cas9 technology. In contrast to cells from Il1a-KOline1, where IL-1ß expression was drastically reduced, bone marrow-derived macrophages (BMDMs) from Il1a-KOline2 mice showed normal induction and activation of IL-1ß. Additionally, Il1a-KOline2 BMDMs showed normal inflammasome activation and IL-1ß expression in response to multiple innate immune triggers, including both pathogen-associated molecular patterns and pathogens. Moreover, using Il1a-KOline2 cells, we confirmed that IL-1α, independent of IL-1ß, is critical for the expression of the neutrophil chemoattractant KC/CXCL1. Overall, we report the generation of a new line of IL-1α KO mice and confirm functions for IL-1α independent of IL-1ß. Future studies on the unique functions of IL-1α and IL-1ß using these mice will be critical to identify new roles for these molecules in health and disease and develop therapeutic strategies.


Subject(s)
Inflammasomes , Interleukin-1alpha , Animals , Mice , Inflammasomes/genetics , Interleukin-1alpha/genetics , Interleukin-8 , Macrophages , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL