Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 617(7959): 73-78, 2023 05.
Article in English | MEDLINE | ID: mdl-37138109

ABSTRACT

In quantum materials, degeneracies and frustrated interactions can have a profound impact on the emergence of long-range order, often driving strong fluctuations that suppress functionally relevant electronic or magnetic phases1-7. Engineering the atomic structure in the bulk or at heterointerfaces has been an important research strategy to lift these degeneracies, but these equilibrium methods are limited by thermodynamic, elastic and chemical constraints8. Here we show that all-optical, mode-selective manipulation of the crystal lattice can be used to enhance and stabilize high-temperature ferromagnetism in YTiO3, a material that shows only partial orbital polarization, an unsaturated low-temperature magnetic moment and a suppressed Curie temperature, Tc = 27 K (refs. 9-13). The enhancement is largest when exciting a 9 THz oxygen rotation mode, for which complete magnetic saturation is achieved at low temperatures and transient ferromagnetism is realized up to Tneq > 80 K, nearly three times the thermodynamic transition temperature. We interpret these effects as a consequence of the light-induced dynamical changes to the quasi-degenerate Ti t2g orbitals, which affect the magnetic phase competition and fluctuations found in the equilibrium state14-20. Notably, the light-induced high-temperature ferromagnetism discovered in our work is metastable over many nanoseconds, underscoring the ability to dynamically engineer practically useful non-equilibrium functionalities.

2.
J Phys Condens Matter ; 31(48): 485803, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31422956

ABSTRACT

Conventional paramagnetism-a state with finite magnetic moment per ion sans long range magnetic ordering, but with lowering temperature the moment each ion picks up a particular direction, breaking spin rotational symmetry, and results into long-range magnetic ordering. However, in systems with competing multiple degrees of freedom this conventional notion may easily break and results into short range correlation much above the global magnetic transition temperature. La2CuIrO6 with complex interplay of spins (s = 1/2) on Cu site and pseudo-spin (j  = 1/2) on Ir site owing to strong spin-orbit coupling provides fertile ground to observe such correlated phenomena. By a comprehensive temperature dependent Raman study, we have shown the presence of such a correlated paramagnetic state in La2CuIrO6 much above the long-range magnetic ordering temperature (T N ). Our observation of strong interactions of phonons, associated with Cu/Ir octahedra, with underlying magnetic degrees of freedom mirrored in the observed Fano asymmetry, which remarkably persists as high as ~3.5T N clearly signals the existence of correlated paramagnetism hence broken spin rotational symmetry. Our detailed analysis also reveals anomalous changes in the self-energy parameters of the phonon modes, i.e. mode frequencies and linewidth, below T N , providing a useful gauge for monitoring the strong coupling between phonons and magnetic degrees of freedom.

3.
J Phys Condens Matter ; 31(6): 065603, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30523849

ABSTRACT

Ba2YIrO6, a Mott insulator, with four valence electrons in Ir5+ d-shell (5d 4) is supposed to be non-magnetic, with J eff = 0, within the atomic physics picture. However, recent suggestions of non-zero magnetism have raised some fundamental questions about its origin. We focus on the phonon dynamics, probed via Raman scattering, as a function of temperature and different incident photon energies, as an external perturbation. Our studies reveal strong renormalization of the phonon self-energy parameters and integrated intensity for first-order modes, especially redshift of the few first-order modes with decreasing temperature and anomalous softening of modes associated with IrO6 octahedra, as well as high energy Raman bands attributed to the strong anharmonic phonons and coupling with orbital excitations. The distinct renormalization of second-order Raman bands with respect to their first-order counterpart suggest that higher energy Raman bands have significant contribution from orbital excitations. Our observation indicates that strong anharmonic phonons coupled with electronic/orbital degrees of freedom provides a knob for tuning the conventional electronic levels for 5d-orbitals, and this may give rise to non-zero magnetism as postulated in recent theoretical calculations with rich magnetic phases.

4.
Phys Rev Lett ; 120(23): 237204, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29932685

ABSTRACT

We report electron spin resonance (ESR) spectroscopy results on the double perovskite Ba_{2}YIrO_{6}. On general grounds, this material is expected to be nonmagnetic due to the strong coupling of the spin and orbital momenta of Ir^{5+} (5d^{4}) ions. However, controversial experimental reports on either strong antiferromagnetism with static order at low temperatures or just a weakly paramagnetic behavior have triggered a discussion on the breakdown of the generally accepted scenario of the strongly spin-orbit coupled ground states in the 5d^{4} iridates and the emergence of a novel exotic magnetic state. Our data evidence that the magnetism of the studied material is solely due to a few percent of Ir^{4+} and Ir^{6+} magnetic defects while the regular Ir^{5+} sites remain nonmagnetic. Remarkably, the defect Ir^{6+} species manifest magnetic correlations in the ESR spectra at T≲20 K, suggesting a long-range character of superexchange in the double perovskites as proposed by recent theories.

5.
Phys Rev Lett ; 113(14): 147206, 2014 Oct 03.
Article in English | MEDLINE | ID: mdl-25325658

ABSTRACT

We report a neutron scattering study of the magnetic order and dynamics of the bilayer perovskite Sr(3)Fe(2)O(7), which exhibits a temperature-driven metal-insulator transition at 340 K. We show that the Fe(4+) moments adopt incommensurate spiral order below T(N) = 115 K and provide a comprehensive description of the corresponding spin-wave excitations. The observed magnetic order and excitation spectra can be well understood in terms of an effective spin Hamiltonian with interactions ranging up to third-nearest-neighbor pairs. The results indicate that the helical magnetism in Sr(3)Fe(2)O(7) results from competition between ferromagnetic double-exchange and antiferromagnetic superexchange interactions whose strengths become comparable near the metal-insulator transition. They thus confirm a decades-old theoretical prediction and provide a firm experimental basis for models of magnetic correlations in strongly correlated metals.

6.
Phys Rev Lett ; 105(16): 167207, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-21231008

ABSTRACT

Using soft x-ray diffraction at the Dy-M5 resonance, pronounced circular dichroism in the ferroelectric phase of DyMnO3 is observed in connection with sizable b and c components of the Dy-4f magnetic moments. This provides strong evidence for cycloidal order of the 4f moments, corroborating that inversion-symmetry breaking in this material is not accomplished by the Mn spins alone. The 4f circular dichroism allows us to image multiferroic domains that are imprinted on the surface of DyMnO3 using the local charging by the x-ray beam via the photoelectric effect.

7.
Phys Rev Lett ; 102(20): 207205, 2009 May 22.
Article in English | MEDLINE | ID: mdl-19519070

ABSTRACT

Using in-field single-crystal neutron diffraction, we have determined the magnetic structure of TbMnO(3) in the high field P parallel a phase. We unambiguously establish that the ferroelectric polarization arises from a cycloidal Mn spin ordering, with spins rotating in the ab plane. Our results demonstrate directly that the flop of the ferroelectric polarization in TbMnO(3) with applied magnetic field is caused from the flop of the Mn cycloidal plane.

8.
Phys Rev Lett ; 99(17): 177206, 2007 Oct 26.
Article in English | MEDLINE | ID: mdl-17995366

ABSTRACT

We report on diffraction measurements on multiferroic TbMnO(3) which demonstrate that the Tb- and Mn-magnetic orders are coupled below the ferroelectric transition T(FE) = 28 K. For T

9.
Phys Rev Lett ; 92(3): 037202, 2004 Jan 23.
Article in English | MEDLINE | ID: mdl-14753902

ABSTRACT

The electronic and magnetic properties of SrFeO(3-delta) single crystals with controlled oxygen content (0< or =delta< or =0.19) have been studied systematically by susceptibility, transport, and spectroscopic techniques. An intimate correlation between the spin-charge ordering and the electronic transport behavior is found. Giant negative as well as positive magnetoresistance are observed.

SELECTION OF CITATIONS
SEARCH DETAIL