Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2783, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37188665

ABSTRACT

Cardiolipin is a hallmark phospholipid of mitochondrial membranes. Despite established significance of cardiolipin in supporting respiratory supercomplex organization, a mechanistic understanding of this lipid-protein interaction is still lacking. To address the essential role of cardiolipin in supercomplex organization, we report cryo-EM structures of a wild type supercomplex (IV1III2IV1) and a supercomplex (III2IV1) isolated from a cardiolipin-lacking Saccharomyces cerevisiae mutant at 3.2-Å and 3.3-Å resolution, respectively, and demonstrate that phosphatidylglycerol in III2IV1 occupies similar positions as cardiolipin in IV1III2IV1. Lipid-protein interactions within these complexes differ, which conceivably underlies the reduced level of IV1III2IV1 and high levels of III2IV1 and free III2 and IV in mutant mitochondria. Here we show that anionic phospholipids interact with positive amino acids and appear to nucleate a phospholipid domain at the interface between the individual complexes, which dampen charge repulsion and further stabilize interaction, respectively, between individual complexes.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Cardiolipins/metabolism , Phosphatidylglycerols/metabolism , Phospholipids/metabolism , Saccharomyces cerevisiae Proteins/metabolism
2.
Biochemistry ; 59(19): 1854-1868, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32363862

ABSTRACT

The lipid environment in which membrane proteins are embedded can influence their structure and function. Lipid-protein interactions and lipid-induced conformational changes necessary for protein function remain intractable in vivo using high-resolution techniques. Using Escherichia coli strains in which the normal phospholipid composition can be altered or foreign lipids can be introduced, we established the importance of membrane lipid composition for the proper folding, assembly, and function of E. coli lactose (LacY) and sucrose (CscB) permeases. However, the molecular mechanism underlying the lipid dependence for active transport remains unknown. Herein, we demonstrate that the structure and function of CscB and LacY can be modulated by the composition of the lipid environment. Using a combination of assays (transport activity of the substrate, protein topology, folding, and assembly into the membrane), we found that alterations in the membrane lipid composition lead to lipid-dependent structural changes in CscB and LacY. These changes affect the orientation of residues involved in LacY proton translocation and impact the rates of protonation and deprotonation of E325 by affecting the arrangement of transmembrane domains in the vicinity of the R302-E325 charge pair. Furthermore, the structural changes caused by changes in membrane lipid composition can be altered by a single-point mutation, highlighting the adaptability of these transporters to their environment. Altogether, our results demonstrate that direct interactions between a protein and its lipid environment uniquely contribute to membrane protein organization and function. Because members of the major facilitator superfamily present with well-conserved functional architecture, we anticipate that our findings can be extrapolated to other membrane protein transporters.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Membrane Lipids/metabolism , Membrane Transport Proteins/metabolism , Monosaccharide Transport Proteins/metabolism , Symporters/metabolism , Escherichia coli Proteins/chemistry , Membrane Lipids/chemistry , Membrane Transport Proteins/chemistry , Models, Molecular , Monosaccharide Transport Proteins/chemistry , Symporters/chemistry
3.
J Biol Chem ; 294(49): 18853-18862, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31645436

ABSTRACT

Posttranslational modifications of proteins, such as phosphorylation and dephosphorylation, play critical roles in cellular functions through diverse cell signaling pathways. Protein kinases and phosphatases have been described early on as key regulatory elements of the phosphorylated state of proteins. Tight spatial and temporal regulation of protein kinase and phosphatase activities has to be achieved in the cell to ensure accurate signal transduction. We demonstrated previously that phosphorylation of a membrane protein can lead to its topological rearrangement. Additionally, we found that both the rate and extent of topological rearrangement upon phosphorylation are lipid charge- and lipid environment-dependent. Here, using a model membrane protein (the bacterial lactose permease LacY reconstituted in proteoliposomes) and a combination of real-time measurements and steady-state assessments of protein topology, we established a set of experimental conditions to dissect the effects of phosphorylation and dephosphorylation of a membrane protein on its topological orientation. We also demonstrate that the phosphorylation-induced topological switch of a membrane protein can be reversed upon protein dephosphorylation, revealing a new regulatory role for phosphorylation/dephosphorylation cycles. Furthermore, we determined that the rate of topological rearrangement reversal is correlated with phosphatase activity and is influenced by the membrane's lipid composition, presenting new insights into the spatiotemporal control of the protein phosphorylation state. Together, our results highlight the importance of the compartmentalization of phosphorylation/dephosphorylation cycles in controlling membrane protein topology and, therefore, function, which are influenced by the local lipid environment of the membrane protein.


Subject(s)
Membrane Lipids/chemistry , Membrane Lipids/metabolism , Phospholipids/chemistry , Phospholipids/metabolism , Protein Folding , Protein Processing, Post-Translational , Proteolipids/metabolism
4.
Nat Commun ; 10(1): 3923, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31462679

ABSTRACT

Circadian disruption aggravates age-related decline and mortality. However, it remains unclear whether circadian enhancement can retard aging in mammals. We previously reported that the small molecule Nobiletin (NOB) activates ROR (retinoid acid receptor-related orphan receptor) nuclear receptors to potentiate circadian oscillation and protect against metabolic dysfunctions. Here we show that NOB significantly improves metabolic fitness in naturally aged mice fed with a regular diet (RD). Furthermore, NOB enhances healthy aging in mice fed with a high-fat diet (HF). In HF skeletal muscle, the NOB-ROR axis broadly activates genes for mitochondrial respiratory chain complexes (MRCs) and fortifies MRC activity and architecture, including Complex II activation and supercomplex formation. These mechanisms coordinately lead to a dichotomous mitochondrial optimization, namely increased ATP production and reduced ROS levels. Together, our study illustrates a focal mechanism by a clock-targeting pharmacological agent to optimize skeletal muscle mitochondrial respiration and promote healthy aging in metabolically stressed mammals.


Subject(s)
Aging/drug effects , Antioxidants/pharmacology , Flavones/pharmacology , Mitochondria, Muscle/drug effects , Muscle, Skeletal/metabolism , Aging/metabolism , Animals , Cell Line , Diet, High-Fat , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria, Muscle/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
5.
Sci Rep ; 9(1): 11338, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31383935

ABSTRACT

Membrane proteins play key roles in cellular functions, their activity mainly depending on their topological arrangement in membranes. Structural studies of membrane proteins have long adopted a protein-centric view regarding the determinants of membrane protein topology and function. Several studies have shown that the orientation of transmembrane domains of polytopic membrane proteins with respect to the plane of the lipid bilayer can be largely determined by membrane lipid composition. However, the mechanism by which membrane proteins exhibit structural and functional duality in the same membrane or different membranes is still unknown. Here we show that lipid-dependent structural and functional assessment of a membrane protein can be conducted in detergent micelles, opening the possibility for the determination of lipid-dependent high-resolution crystal structures. We found that the lactose permease purified from Escherichia coli cells exhibiting varied phospholipid compositions exhibits the same topology and similar function as in its membrane of origin. Furthermore, we found several conditions, including protein mutations and micelle lipid composition, that lead to increased protein stability, correlating with a higher yield of two-dimensional crystal formation. Altogether, our results demonstrate how the membrane lipid environment influences membrane protein topology and arrangement, both in native membranes and in mixed detergent micelles.


Subject(s)
Detergents/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Micelles , Monosaccharide Transport Proteins/chemistry , Phospholipids/chemistry , Symporters/chemistry , Models, Molecular , Protein Conformation , Protein Stability
6.
J Bacteriol ; 199(13)2017 07 01.
Article in English | MEDLINE | ID: mdl-28439040

ABSTRACT

Bacteria have evolved multiple strategies to sense and rapidly adapt to challenging and ever-changing environmental conditions. The ability to alter membrane lipid composition, a key component of the cellular envelope, is crucial for bacterial survival and adaptation in response to environmental stress. However, the precise roles played by membrane phospholipids in bacterial physiology and stress adaptation are not fully elucidated. The goal of this study was to define the role of membrane phospholipids in adaptation to stress and maintenance of bacterial cell fitness. By using genetically modified strains in which the membrane phospholipid composition can be systematically manipulated, we show that alterations in major Escherichia coli phospholipids transform these cells globally. We found that alterations in phospholipids impair the cellular envelope structure and function, the ability to form biofilms, and bacterial fitness and cause phospholipid-dependent susceptibility to environmental stresses. This study provides an unprecedented view of the structural, signaling, and metabolic pathways in which bacterial phospholipids participate, allowing the design of new approaches in the investigation of lipid-dependent processes involved in bacterial physiology and adaptation.IMPORTANCE In order to cope with and adapt to a wide range of environmental conditions, bacteria have to sense and quickly respond to fluctuating conditions. In this study, we investigated the effects of systematic and controlled alterations in bacterial phospholipids on cell shape, physiology, and stress adaptation. We provide new evidence that alterations of specific phospholipids in Escherichia coli have detrimental effects on cellular shape, envelope integrity, and cell physiology that impair biofilm formation, cellular envelope remodeling, and adaptability to environmental stresses. These findings hold promise for future antibacterial therapies that target bacterial lipid biosynthesis.


Subject(s)
Cell Membrane/physiology , Escherichia coli/physiology , Phospholipids/metabolism , Bacterial Adhesion , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Biofilms , Escherichia coli/cytology , Escherichia coli/genetics , Escherichia coli/ultrastructure , Gene Expression Regulation, Bacterial/physiology , Homeostasis/physiology , Lipopolysaccharides/metabolism , Stress, Physiological
7.
J Agric Food Chem ; 64(9): 1957-69, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26888166

ABSTRACT

Flavonoid and limonoid glycosides influence taste properties as well as marketability of Citrus fruit and products, particularly grapefruit. In this work, nine grapefruit putative natural product glucosyltransferases (PGTs) were resolved by either using degenerate primers against the semiconserved PSPG box motif, SMART-RACE RT-PCR, and primer walking to full-length coding regions; screening a directionally cloned young grapefruit leaf EST library; designing primers against sequences from other Citrus species; or identifying PGTs from Citrus contigs in the harvEST database. The PGT proteins associated with the identified full-length coding regions were recombinantly expressed in Escherichia coli and/or Pichia pastoris and then tested for activity with a suite of substrates including flavonoid, simple phenolic, coumarin, and/or limonoid compounds. A number of these compounds were eliminated from the predicted and/or potential substrate pool for the identified PGTs. Enzyme activity was detected in some instances with quercetin and catechol glucosyltransferase activities having been identified.


Subject(s)
Citrus paradisi/enzymology , Glucosyltransferases/analysis , Glucosyltransferases/genetics , Recombinant Proteins/genetics , Amino Acid Sequence , Coumarins/metabolism , Escherichia coli/metabolism , Flavonoids/metabolism , Gene Expression , Genes, Plant/genetics , Limonins/metabolism , Molecular Sequence Data , Phenols/metabolism , Phylogeny , Pichia/metabolism , Seeds/enzymology , Sequence Alignment , Substrate Specificity
8.
J Biol Chem ; 288(1): 401-11, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23172229

ABSTRACT

Here, we report for the first time in vitro reconstitution of the respiratory supercomplexes from individual complexes III and IV. Complexes III and IV were purified from Saccharomyces cerevisiae mitochondria. Complex III contained eight molecules of cardiolipin, and complex IV contained two molecules of cardiolipin, as determined by electrospray ionization-mass spectrometry. Complex IV also contained Rcf1p. No supercomplexes were formed upon mixing of the purified complexes, and low amounts of the supercomplex trimer III(2)IV(1) were formed after reconstitution into proteoliposomes containing only phosphatidylcholine and phosphatidylethanolamine. Further addition of cardiolipin to the proteoliposome reconstitution mixture resulted in distinct formation of both the III(2)IV(1) supercomplex trimer and III(2)IV(2) supercomplex tetramer. No other anionic phospholipid was as effective as cardiolipin in supporting tetramer formation. Phospholipase treatment of complex IV prevented trimer formation in the absence of cardiolipin. Both trimer and tetramer formations were restored by cardiolipin. Analysis of the reconstituted tetramer by single particle electron microscopy confirmed native organization of individual complexes within the supercomplex. In conclusion, although some trimer formation occurred dependent only on tightly bound cardiolipin, tetramer formation required additional cardiolipin. This is consistent with the high cardiolipin content in the native tetramer. The dependence on cardiolipin for supercomplex formation suggests that changes in cardiolipin levels resulting from changes in physiological conditions may control the equilibrium between individual respiratory complexes and supercomplexes in vivo.


Subject(s)
Cardiolipins/chemistry , Electron Transport Complex III/metabolism , Electron Transport Complex IV/metabolism , Saccharomyces cerevisiae/metabolism , Cytochrome Reductases/chemistry , Electron Transport Complex IV/chemistry , Lipids/chemistry , Microscopy, Electron/methods , Mitochondria/metabolism , Phospholipases/chemistry , Protein Binding , Proteolipids/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry
9.
J Biol Chem ; 287(27): 23095-103, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22573332

ABSTRACT

Here we present for the first time a three-dimensional cryo-EM map of the Saccharomyces cerevisiae respiratory supercomplex composed of dimeric complex III flanked on each side by one monomeric complex IV. A precise fit of the existing atomic x-ray structures of complex III from yeast and complex IV from bovine heart into the cryo-EM map resulted in a pseudo-atomic model of the three-dimensional structure for the supercomplex. The distance between cytochrome c binding sites of complexes III and IV is about 6 nm, which supports proposed channeling of cytochrome c between the individual complexes. The opposing surfaces of complexes III and IV differ considerably from those reported for the bovine heart supercomplex as determined by cryo-EM. A closer association between the individual complex domains at the aqueous membrane interface and larger spaces between the membrane-embedded domains where lipid molecules may reside are also demonstrated. The supercomplex contains about 50 molecules of cardiolipin (CL) with a fatty acid composition identical to that of the inner membrane CL pool, consistent with CL-dependent stabilization of the supercomplex.


Subject(s)
Cryoelectron Microscopy/methods , Electron Transport Complex III/chemistry , Electron Transport Complex IV/chemistry , Mitochondria/enzymology , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Crystallography, X-Ray , Electron Transport/physiology , Electron Transport Complex III/isolation & purification , Electron Transport Complex III/metabolism , Electron Transport Complex IV/isolation & purification , Electron Transport Complex IV/metabolism , Lipids/chemistry , Mitochondria/ultrastructure , Models, Chemical , Protein Structure, Quaternary , Protein Structure, Tertiary , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/isolation & purification , Saccharomyces cerevisiae Proteins/metabolism , Species Specificity , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...