Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Life Sci Alliance ; 6(11)2023 11.
Article in English | MEDLINE | ID: mdl-37696578

ABSTRACT

As no existing methods within the single-cell RNA sequencing repertoire combine genotyping of specific genomic loci with high throughput, we evaluated a straightforward, targeted sequencing approach as an extension to high-throughput droplet-based single-cell RNA sequencing. Overlaying standard gene expression data with transcript level genotype information provides a strategy to study the impact of genetic variants. Here, we describe this targeted sequencing extension, explain how to process the data and evaluate how technical parameters such as amount of input cDNA, number of amplification rounds, and sequencing depth influence the number of transcripts detected. Finally, we demonstrate how targeted sequencing can be used in two contexts: (1) simultaneous investigation of the presence of a somatic variant and its potential impact on the transcriptome of affected cells and (2) evaluation of allele-specific expression of a germline variant in ad hoc cell subsets. Through these and other comparable applications, our targeted sequencing extension has the potential to improve our understanding of functional effects caused by genetic variation.


Subject(s)
Gene Expression Profiling , Transcriptome , Transcriptome/genetics , Genotype , Alleles , Genomics
2.
Front Immunol ; 12: 676619, 2021.
Article in English | MEDLINE | ID: mdl-34122439

ABSTRACT

Although fingolimod and interferon-ß are two mechanistically different multiple sclerosis (MS) treatments, they both induce B cell activating factor (BAFF) and shift the B cell pool towards a regulatory phenotype. However, whether there is a shared mechanism between both treatments in how they influence the B cell compartment remains elusive. In this study, we collected a cross-sectional study population of 112 MS patients (41 untreated, 42 interferon-ß, 29 fingolimod) and determined B cell subsets, cell-surface and RNA expression of BAFF-receptor (BAFF-R) and transmembrane activator and cyclophilin ligand interactor (TACI) as well as plasma and/or RNA levels of BAFF, BAFF splice forms and interleukin-10 (IL-10) and -35 (IL-35). We added an in vitro B cell culture with four stimulus conditions (Medium, CpG, BAFF and CpG+BAFF) for untreated and interferon-ß treated patients including measurement of intracellular IL-10 levels. Our flow experiments showed that interferon-ß and fingolimod induced BAFF protein and mRNA expression (P ≤ 3.15 x 10-4) without disproportional change in the antagonizing splice form. Protein BAFF correlated with an increase in transitional B cells (P = 5.70 x 10-6), decrease in switched B cells (P = 3.29 x 10-4), and reduction in B cell-surface BAFF-R expression (P = 2.70 x 10-10), both on TACI-positive and -negative cells. TACI and BAFF-R RNA levels remained unaltered. RNA, plasma and in vitro experiments demonstrated that BAFF was not associated with increased IL-10 and IL-35 levels. In conclusion, treatment-induced BAFF correlates with a shift towards transitional B cells which are enriched for cells with an immunoregulatory function. However, BAFF does not directly influence the expression of the immunoregulatory cytokines IL-10 and IL-35. Furthermore, the post-translational mechanism of BAFF-induced BAFF-R cell surface loss was TACI-independent. These observations put the failure of pharmaceutical anti-BAFF strategies in perspective and provide insights for targeted B cell therapies.


Subject(s)
B-Cell Activating Factor/metabolism , B-Lymphocyte Subsets/immunology , Fingolimod Hydrochloride/therapeutic use , Immunosuppressive Agents/therapeutic use , Interferon-beta/therapeutic use , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Precursor Cells, B-Lymphoid/immunology , Signal Transduction/drug effects , Adult , Aged , B-Cell Activating Factor/genetics , B-Cell Activation Factor Receptor/genetics , B-Cell Activation Factor Receptor/metabolism , B-Lymphocyte Subsets/drug effects , Cells, Cultured , Cross-Sectional Studies , Female , Follow-Up Studies , Humans , Interleukin-10/metabolism , Interleukins , Male , Middle Aged , Precursor Cells, B-Lymphoid/drug effects , RNA, Messenger/genetics , Transmembrane Activator and CAML Interactor Protein/genetics , Transmembrane Activator and CAML Interactor Protein/metabolism , Treatment Outcome
3.
Ann Neurol ; 89(5): 884-894, 2021 05.
Article in English | MEDLINE | ID: mdl-33704824

ABSTRACT

OBJECTIVE: Many multiple sclerosis (MS) genetic susceptibility variants have been identified, but understanding disease heterogeneity remains a key challenge. Relapses are a core feature of MS and a common primary outcome of clinical trials, with prevention of relapses benefiting patients immediately and potentially limiting long-term disability accrual. We aim to identify genetic variation associated with relapse hazard in MS by analyzing the largest study population to date. METHODS: We performed a genomewide association study (GWAS) in a discovery cohort and investigated the genomewide significant variants in a replication cohort. Combining both cohorts, we captured a total of 2,231 relapses occurring before the start of any immunomodulatory treatment in 991 patients. For assessing time to relapse, we applied a survival analysis utilizing Cox proportional hazards models. We also investigated the association between MS genetic risk scores and relapse hazard and performed a gene ontology pathway analysis. RESULTS: The low-frequency genetic variant rs11871306 within WNT9B reached genomewide significance in predicting relapse hazard and replicated (meta-analysis hazard ratio (HR) = 2.15, 95% confidence interval (CI) = 1.70-2.78, p = 2.07 × 10-10 ). A pathway analysis identified an association of the pathway "response to vitamin D" with relapse hazard (p = 4.33 × 10-6 ). The MS genetic risk scores, however, were not associated with relapse hazard. INTERPRETATION: Genetic factors underlying disease heterogeneity differ from variants associated with MS susceptibility. Our findings imply that genetic variation within the Wnt signaling and vitamin D pathways contributes to differences in relapse occurrence. The present study highlights these cross-talking pathways as potential modulators of MS disease activity. ANN NEUROL 2021;89:884-894.


Subject(s)
Multiple Sclerosis/genetics , Wnt Proteins/genetics , Adult , Cohort Studies , Female , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Heterozygote , Humans , Male , Multiple Sclerosis/physiopathology , Predictive Value of Tests , Prognosis , Proportional Hazards Models , Recurrence , Risk Assessment , Survival Analysis , Vitamin D/physiology , Young Adult
4.
Ann Neurol ; 87(4): 633-645, 2020 04.
Article in English | MEDLINE | ID: mdl-31997416

ABSTRACT

OBJECTIVE: Evidence for a role of microglia in the pathogenesis of multiple sclerosis (MS) is growing. We investigated association of microglial markers at time of diagnostic lumbar puncture (LP) with different aspects of disease activity (relapses, disability, magnetic resonance imaging parameters) up to 6 years later in a cohort of 143 patients. METHODS: In cerebrospinal fluid (CSF), we measured 3 macrophage and microglia-related proteins, chitotriosidase (CHIT1), chitinase-3-like protein 1 (CHI3L1 or YKL-40), and soluble triggering receptor expressed on myeloid cells 2 (sTREM2), as well as a marker of neuronal damage, neurofilament light chain (NfL), using enzyme-linked immunosorbent assay and electrochemiluminescence. We investigated the same microglia-related markers in publicly available RNA expression data from postmortem brain tissue. RESULTS: CHIT1 levels at diagnostic LP correlated with 2 aspects of long-term disease activity after correction for multiple testing. First, CHIT1 increased with reduced tissue integrity in lesions at a median 3 years later (p = 9.6E-04). Second, CHIT1 reflected disease severity at a median 5 years later (p = 1.2E-04). Together with known clinical covariates, CHIT1 levels explained 12% and 27% of variance in these 2 measures, respectively, and were able to distinguish slow and fast disability progression (area under the curve = 85%). CHIT1 was the best discriminator of chronic active versus chronic inactive lesions and the only marker correlated with NfL (r = 0.3, p = 0.0019). Associations with disease activity were, however, independent of NfL. INTERPRETATION: CHIT1 CSF levels measured during the diagnostic LP reflect microglial activation early on in MS and can be considered a valuable prognostic biomarker for future disease activity. ANN NEUROL 2020;87:633-645.


Subject(s)
Hexosaminidases/cerebrospinal fluid , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/physiopathology , Adult , Brain/diagnostic imaging , Chitinase-3-Like Protein 1/cerebrospinal fluid , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Male , Membrane Glycoproteins/cerebrospinal fluid , Middle Aged , Multiple Sclerosis/diagnostic imaging , Neurofilament Proteins/cerebrospinal fluid , Prognosis , Receptors, Immunologic , Young Adult
5.
Hum Mol Genet ; 28(8): 1369-1380, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30541027

ABSTRACT

The role of somatic variants in diseases beyond cancer is increasingly being recognized, with potential roles in autoinflammatory and autoimmune diseases. However, as mutation rates and allele fractions are lower, studies in these diseases are substantially less tolerant of false positives, and bio-informatics algorithms require high replication rates. We developed a pipeline combining two variant callers, MuTect2 and VarScan2, with technical filtering and prioritization. Our pipeline detects somatic variants with allele fractions as low as 0.5% and achieves a replication rate of >55%. Validation in an independent data set demonstrates excellent performance (sensitivity > 57%, specificity > 98%, replication rate > 80%). We applied this pipeline to the autoimmune disease multiple sclerosis (MS) as a proof-of-principle. We demonstrate that 60% of MS patients carry 2-10 exonic somatic variants in their peripheral blood T and B cells, with the vast majority (80%) occurring in T cells and variants persisting over time. Synonymous variants significantly co-occur with non-synonymous variants. Systematic characterization indicates somatic variants are enriched for being novel or very rare in public databases of germline variants and trend towards being more damaging and conserved, as reflected by higher phred-scaled combined annotation-dependent depletion (CADD) and genomic evolutionary rate profiling (GERP) scores. Our pipeline and proof-of-principle now warrant further investigation of common somatic genetic variation on top of inherited genetic variation in the context of autoimmune disease, where it may offer subtle survival advantages to immune cells and contribute to the capacity of these cells to participate in the autoimmune reaction.


Subject(s)
Autoimmune Diseases/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Adaptive Immunity/genetics , Adult , Algorithms , Alleles , Computational Biology/methods , DNA Mutational Analysis , Female , Genetic Variation/genetics , Humans , Male , Middle Aged , Mutation , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results , Software
6.
Cell Rep ; 25(3): 798-810.e6, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30332657

ABSTRACT

The immune system is highly diverse, but characterization of its genetic architecture has lagged behind the vast progress made by genome-wide association studies (GWASs) of emergent diseases. Our GWAS for 54 functionally relevant phenotypes of the adaptive immune system in 489 healthy individuals identifies eight genome-wide significant associations explaining 6%-20% of variance. Coding and splicing variants in PTPRC and COMMD10 are involved in memory T cell differentiation. Genetic variation controlling disease-relevant T helper cell subsets includes RICTOR and STON2 associated with Th2 and Th17, respectively, and the interferon-lambda locus controlling regulatory T cell proliferation. Early and memory B cell differentiation stages are associated with variation in LARP1B and SP4. Finally, the latrophilin family member ADGRL2 correlates with baseline pro-inflammatory interleukin-6 levels. Suggestive associations reveal mechanisms of autoimmune disease associations, in particular related to pro-inflammatory cytokine production. Pinpointing these key human immune regulators offers attractive therapeutic perspectives.


Subject(s)
Autoimmune Diseases/genetics , Gene Expression Regulation , Genetic Predisposition to Disease , Genome-Wide Association Study , Immunologic Factors/genetics , Polymorphism, Single Nucleotide , Adolescent , Adult , Aged , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Female , Gene Expression Profiling , Healthy Volunteers , Humans , Male , Middle Aged , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Young Adult
7.
J Neuroimmunol ; 324: 129-135, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30170791

ABSTRACT

LncRNA PCR arrays containing 90 common LncRNAs were used to screen lncRNA expression levels in PBMC from a discovery population of patients with MS. Data from discovery and replications cohorts showed a generalized dysregulation of lncRNA levels in MS patients compared with controls. MALAT1, MEG9, NRON, ANRIL, TUG1, XIST, SOX2OT, GOMAFU, HULC, BACE-1AS were significantly downregulated in MS patients in comparison with controls. Therefore, we performed a validation analysis in an independent cohort of Belgian origin. In this study, NRON and TUG1 downregulations in MS patients compared with controls were confirmed (p ≤ .05 and p ≤ .0001 respectively), whereas considering the other lncRNAs, the statistical threshold was not reached. LncRNAs profiling could thus represent a new challenge in the research of easy detectable biomarkers of disease susceptibility and progression.


Subject(s)
Leukocytes, Mononuclear/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics , Transcriptome/physiology , Adult , Belgium/epidemiology , Biomarkers/metabolism , Cohort Studies , Female , Humans , Italy/epidemiology , Male , Middle Aged , Multiple Sclerosis/epidemiology
8.
Mult Scler ; 24(13): 1773-1775, 2018 11.
Article in English | MEDLINE | ID: mdl-29303040

ABSTRACT

BACKGROUND: In contrast to successes for multiple sclerosis (MS) susceptibility, the genetic basis for clinical heterogeneity remains largely unresolved. OBJECTIVES: We investigate the first reported genetic association with relapse rate. METHODS: We genotyped variant rs12988804 in LRP2 in a homogeneous study population of 527 Belgian MS patients with 970 documented relapses. RESULTS: The rs12988804*T allele is associated with a 1.16-fold increased hazard rate for a relapse occurring ( P = 0.0078) and a higher baseline relapse rate prior to immunomodulatory treatment ( P = 0.044). CONCLUSION: Variant rs12988804 in LRP2, the first example of a genome-wide significant association with relapse rate in MS, is replicated in an independent study.


Subject(s)
Genetic Predisposition to Disease/genetics , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide/genetics , Adult , Alleles , Belgium , Chronic Disease , Female , Genotype , Humans , Male , Recurrence
9.
Brain ; 141(3): 786-796, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29361022

ABSTRACT

The increasing evidence supporting a role for B cells in the pathogenesis of multiple sclerosis prompted us to investigate the influence of known susceptibility variants on the surface expression of co-stimulatory molecules in these cells. Using flow cytometry we measured surface expression of CD40 and CD86 in B cells from 68 patients and 162 healthy controls that were genotyped for the multiple sclerosis associated single nucleotide polymorphisms (SNPs) rs4810485, which maps within the CD40 gene, and rs9282641, which maps within the CD86 gene. We found that carrying the risk allele rs4810485*T lowered the cell-surface expression of CD40 in all tested B cell subtypes (in total B cells P ≤ 5.10 × 10-5 in patients and ≤4.09 × 10-6 in controls), while carrying the risk allele rs9282641*G increased the expression of CD86, with this effect primarily seen in the naïve B cell subset (P = 0.048 in patients and 5.38 × 10-5 in controls). In concordance with these results, analysis of RNA expression demonstrated that the risk allele rs4810485*T resulted in lower total CD40 expression (P = 0.057) but with an increased proportion of alternative splice-forms leading to decoy receptors (P = 4.00 × 10-7). Finally, we also observed that the risk allele rs4810485*T was associated with decreased levels of interleukin-10 (P = 0.020), which is considered to have an immunoregulatory function downstream of CD40. Given the importance of these co-stimulatory molecules in determining the immune reaction that appears in response to antigen our data suggest that B cells might have an important antigen presentation and immunoregulatory role in the pathogenesis of multiple sclerosis.


Subject(s)
B-Lymphocytes/metabolism , B7-2 Antigen/genetics , CD40 Antigens/genetics , Genetic Predisposition to Disease/genetics , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide/genetics , B-Lymphocytes/pathology , Correlation of Data , Cytokines/blood , Female , Gene Expression Regulation/genetics , Genotype , Humans , Interleukin-10/metabolism , Male , Multiple Sclerosis/blood , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...