Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Colloid Interface Sci ; 662: 535-544, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38364478

ABSTRACT

HYPOTHESIS: Surfactants are inexpensive chemicals with promising applications in virus inactivation, particularly for enveloped viruses. Yet, the detailed mechanisms by which surfactants deactivate coronaviruses remain underexplored. This study delves into the virucidal mechanisms of various surfactants on Feline Coronavirus (FCoV) and their potential applications against more pathogenic coronaviruses. EXPERIMENTS: By integrating virucidal activity assays with fluorescence spectroscopy, dynamic light scattering and laser Doppler electrophoresis, alongside liposome permeability experiments, we have analyzed the effects of non-ionic and ionic surfactants on viral activity. FINDINGS: The non-ionic surfactant octaethylene glycol monodecyl ether (C10EO8) inactivates the virus by disrupting the lipid envelope, whereas ionic surfactants like Sodium Dodecyl Sulfate and Cetylpyridinium Chloride predominantly affect the spike proteins, with their impact on the viral membrane being hampered by kinetic and thermodynamic constraints. FCoV served as a safe model for studying virucidal activity, offering a faster alternative to traditional virucidal assays. The study demonstrates that physicochemical techniques can expedite the screening of virucidal compounds, contributing to the design of effective disinfectant formulations. Our results not only highlight the critical role of surfactant-virus interactions but also contribute to strategic advancements in public health measures for future pandemic containment and the ongoing challenge of antimicrobial resistance.


Subject(s)
Coronavirus, Feline , Surface-Active Agents , Animals , Cats , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Coronavirus, Feline/physiology , Sodium Dodecyl Sulfate , Virus Inactivation
2.
Appl Spectrosc ; 77(11): 1253-1263, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37700694

ABSTRACT

Nanoparticle-enhanced laser-induced breakdown spectroscopy (NELIBS) is an optical emission technique based on the laser-induced plasma (LIP) on a sample after the deposition of plasmonic nanoparticles (NPs) on its surface. The employment of the NPs allows an enhancement of the signal with respect to the one obtained with the conventional laser-induced breakdown spectroscopy (LIBS) enabling an extremely high sensitivity and very low limits of detection compared with the LIBS performance. Recently, NELIBS was used for monitoring the NP protein corona formation. As a matter of fact, the NPs in the presence of proteins adsorbed on the surface change their surface properties, therefore the sensing of protein corona formation was possible because of the strong dependence of NELIBS effects on the NP organization on the substrate, which in turn is deeply affected by the surface properties of the NPs. A correlation was found between NELIBS enhancement and the structure of the NP-protein conjugate in terms of protein content absorbed on the NP surface. An interesting question that was not yet exploited regards the role of LIP during the NELIBS when the NPs are covered with proteins. Since the presence of organic matter can strongly quench the LIP emission, the study of the LIP properties during protein corona sensing by NELIBS is of interest for two main reasons: (i) to understand whether the plasma parameters can vary in the presence of proteins adsorbed on the NP surface and (ii) to investigate how and if the plasma parameters themselves can influence the NELIBS processes. With this aim, the study of plasma parameters, i.e., electron densities and temperatures, during the sensing of NP protein corona by NELIBS is presented and discussed. The NPs used during these experiments were ultrapure gold NPs (AuNPs) produced by pulsed laser ablation in liquid, which are stable without any stabilizer. The human serum albumin protein is used to form AuNP-protein conjugates further deposited on a titanium target in NELIBS measurements. Dynamic light scattering, surface plasmon resonance spectroscopy, and laser Doppler electrophoresis for ζ-potential determination were employed to monitor the protein coverage of NP surface in the conjugate solutions before the NELIBS measurements.


Subject(s)
Metal Nanoparticles , Nanoparticles , Protein Corona , Humans , Protein Corona/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Proteins/chemistry , Nanoparticles/chemistry , Spectrum Analysis , Lasers
3.
Colloids Surf B Biointerfaces ; 220: 112885, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36191409

ABSTRACT

The interactions between diluted phospholipid vesicles (0.3 µM - 40 µM) and surfactants (around their cmc) have been investigated as model of the phenomena taking place when enveloped viruses are challenged by detergent formulations such as mouthwashes or dishwashing liquids. We have used negatively charged Small Unilamellar Vesicles (SUVs) to simulate the negatively charged viral envelope and surfactants with different charges: the anionic Sodium Dodecyl Sulphate (SDS), the cationic Cetylpyridinium Chloride (CPC) and the non-ionic Octaethylene glycol monodecyl ether (C10E8). Dynamic and Electrophoretic Light Scattering have been used to probe variations in size and surface charge of the vesicles. The surfactants effect on the membrane permeability was investigated by measuring the fluorescence of SUVs secluding the fluorophore calcein. All the surfactants perturb the bilayer inducing graded dye leakage. Irrespective of the chemical nature of the surfactant, the membrane leakage follows the same sigmoidal master curve when it is plotted against the ratio surfactant concentration/cmc. The membrane leakage is negligible below cmc/2 and above such a value increases up to the cmc where all the dye has been fully released. For ionic SDS and CPC the dependence of leakage halftime on such a scaled concentration is the same irrespective of the charge of the surfactant and the vesicles. The nonionic surfactant C10E8 induces the dye release from the SUV two orders-of-magnitude faster than the ionic surfactants. These results show that the rate-determining parameter for the permeabilization of the lipid bilayers is the electrostatic penalty to the flip-flop required to transport the surfactant inside the vesicle.


Subject(s)
Phospholipids , Surface-Active Agents , Sodium Dodecyl Sulfate , Lipid Bilayers , Micelles , Cetylpyridinium , Cations
4.
Biomolecules ; 11(12)2021 12 10.
Article in English | MEDLINE | ID: mdl-34944501

ABSTRACT

The role of extracellular vesicles (EVs) has been completely re-evaluated in the recent decades, and EVs are currently considered to be among the main players in intercellular communication. Beyond their functional aspects, there is strong interest in the development of faster and less expensive isolation protocols that are as reliable for post-isolation characterisations as already-established methods. Therefore, the identification of easy and accessible EV isolation techniques with a low price/performance ratio is of paramount importance. We isolated EVs from a wide spectrum of samples of biological and clinical interest by choosing two isolation techniques, based on their wide use and affordability: ultracentrifugation and salting-out. We collected EVs from human cancer and healthy cell culture media, yeast, bacteria and Drosophila culture media and human fluids (plasma, urine and saliva). The size distribution and concentration of EVs were measured by nanoparticle tracking analysis and dynamic light scattering, and protein depletion was measured by a colorimetric nanoplasmonic assay. Finally, the EVs were characterised by flow cytometry. Our results showed that the salting-out method had a good efficiency in EV separation and was more efficient in protein depletion than ultracentrifugation. Thus, salting-out may represent a good alternative to ultracentrifugation.


Subject(s)
Bacteria/growth & development , Culture Media, Conditioned/chemistry , Drosophila/growth & development , Extracellular Vesicles/metabolism , Fungi/growth & development , Neoplasms/metabolism , Animals , Bacteria/chemistry , Caco-2 Cells , Case-Control Studies , Drosophila/chemistry , Dynamic Light Scattering , Flow Cytometry , Fungi/chemistry , Healthy Volunteers , Humans , Nanoparticles , Particle Size , Ultracentrifugation
5.
Int J Nanomedicine ; 16: 5153-5165, 2021.
Article in English | MEDLINE | ID: mdl-34611399

ABSTRACT

INTRODUCTION: Small extracellular vesicles (sEVs), thanks to their cargo, are involved in cellular communication and play important roles in cell proliferation, growth, differentiation, apoptosis, stemness and embryo development. Their contribution to human pathology has been widely demonstrated and they are emerging as strategic biomarkers of cancer, neurodegenerative and cardiovascular diseases, and as potential targets for therapeutic intervention. However, the use of sEVs for medical applications is still limited due to the selectivity and sensitivity limits of the commonly applied approaches. METHODS: Novel sensing solutions based on nanomaterials are arising as strategic tools able to surpass traditional sensor limits. Among these, Si nanowires (Si NWs), realized with cost-effective industrially compatible metal-assisted chemical etching, are perfect candidates for sEV detection. RESULTS: In this paper, the realization of a selective sensor able to isolate, concentrate and quantify specific vesicle populations, from minimal volumes of biofluid, is presented. In particular, this Si NW platform has a detection limit of about 2×105 sEVs/mL and was tested with follicular fluid and blastocoel samples. Moreover, the possibility to detach the selectively isolated sEVs allowing further analyses with other approaches was demonstrated by SEM analysis and several PCRs performed on the RNA content of the detached sEVs. DISCUSSION: This platform overcomes the limit of detection of traditional methods and, most importantly, preserves the biological content of sEVs, opening the route toward a reliable liquid biopsy analysis.


Subject(s)
Extracellular Vesicles , Nanowires , Biomarkers , Cell Proliferation , Humans , Silicon
6.
Talanta ; 235: 122741, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34517609

ABSTRACT

Recently nanoparticle enhanced Laser Induced Breakdown Spectroscopy (NELIBS) is getting a growing interest as an effective alternative method for improving the analytical performance of LIBS. On the other hand, the plasmonic effect during laser ablation can be used for a different task rather than elemental analysis. In this paper, the dependence of NELIBS emission signal enhancement on nanoparticle-protein solutions dried on a reference substrate (metallic titanium) was investigated. Two proteins were studied: Human Serum Albumin (HSA) and Cytochrome C (CytC). Both proteins have a strong affinity for the gold nanoparticles (AuNPs) due to the bonding between the single free exterior thiol (associated with a cysteine residue) and the gold surface to form a stable protein corona. Then, since the protein sizes are vastly different, a different number of protein units is needed to cover AuNP surface to form a protein layer. The NP-protein solution was dropped and dried onto the titanium substrate. Then the NELIBS signal enhancement of Ti emission lines was correlated to the solution characteristics as determined with Dynamic Light Scattering (DLS), Surface Plasmon Resonance (SPR) spectroscopy and Laser Doppler Electrophoresis (LDE) for ζ-potential determination. Moreover, the dried solutions were studied with TEM (Transmission Electron Microscopy) for the inspection of the inter-particle distance. The structural effect of the NP-protein conjugates on the NELIBS signal reveals that NELIBS can be used to determine the number of protein units required to form the nanoparticle-protein corona with good accuracy. Although the investigated NP-protein systems are simple cases in biological applications, this work demonstrates, for the first time, a different use of NELIBS that is beyond elemental analysis and it opens the way for sensing the nanoparticle protein corona.


Subject(s)
Metal Nanoparticles , Protein Corona , Gold , Humans , Lasers , Spectrum Analysis
7.
Materials (Basel) ; 13(9)2020 May 09.
Article in English | MEDLINE | ID: mdl-32397486

ABSTRACT

The direct interaction of atmospheric pressure non-equilibrium plasmas with tyrosinase (Tyr) was investigated under typical conditions used in surface processing. Specifically, Tyr dry deposits were exposed to dielectric barrier discharges (DBDs) fed with helium, helium/oxygen, and helium/ethylene mixtures, and effects on enzyme functionality were evaluated. First of all, results show that DBDs have a measurable impact on Tyr only when experiments were carried out using very low enzyme amounts. An appreciable decrease in Tyr activity was observed upon exposure to oxygen-containing DBD. Nevertheless, the combined use of X-ray photoelectron spectroscopy and white-light vertical scanning interferometry revealed that, in this reactive environment, Tyr deposits displayed remarkable etching resistance, reasonably conferred by plasma-induced changes in their surface chemical composition as well as by their coffee-ring structure. Ethylene-containing DBDs were used to coat tyrosinase with a hydrocarbon polymer film, in order to obtain its immobilization. In particular, it was found that Tyr activity can be fully retained by properly adjusting thin film deposition conditions. All these findings enlighten a high stability of dry enzymes in various plasma environments and open new opportunities for the use of atmospheric pressure non-equilibrium plasmas in enzyme immobilization strategies.

8.
Colloids Surf B Biointerfaces ; 168: 134-142, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29428682

ABSTRACT

Extracellular vesicles (EVs) are vesicles naturally secreted by the majority of human cells. Being composed by a closed phospholipid bilayer secluding proteins and RNAs they are used to transfer molecular information to other cells, thereby influencing the recipient cell functions. Despite the increasingly recognized relevance of EVs, the clarification of their physiological role is hampered by the lack of suitable analytical tools for their quantification and characterization. In this study, we have implemented a nanoplasmonic assay, previously proposed for the purity of the EV fractions, to achieve a robust analytical protocol in order to quantify the total phospholipid concentration (CPL) and the EVs number. We show how the coupling of the nanoplasmonic assay with serial dilutions of the unknown sample allows, by simple visual inspection, to detect deviations from the physiological EVs content. The use of a response that depends on the absorbance values at three wavelengths permits to reduce the limit of detection of CPL to 5 µM (total) and the limit of quantification to 35 µM. We also propose a method that takes into account the spread in EV size when the concentration of phospholipids is turned into a concentration of vesicles. The proposed analytical protocol is successfully applied to a small cohort of Multiple Sclerosis patients examined in different stages of their clinical diseases.


Subject(s)
Colorimetry/methods , Dynamic Light Scattering/methods , Extracellular Vesicles/chemistry , Multiple Sclerosis/blood , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Nanotechnology/methods , Particle Size , Phospholipids/analysis , RNA/analysis
9.
Biochim Biophys Acta ; 1857(9): 1541-1549, 2016 09.
Article in English | MEDLINE | ID: mdl-27297026

ABSTRACT

It is a common believe that intra-protein electron transfer (ET) involving reactants and products that are overall electroneutral are not influenced by the ions of the surrounding solution. The results presented here show an electrostatic coupling between the ionic atmosphere surrounding a membrane protein (the reaction center (RC) from the photosynthetic bacterium Rhodobacter sphaeroides) and two very different intra-protein ET processes taking place within it. Specifically we have studied the effect of salt concentration on: i) the kinetics of the charge recombination between the reduced primary quinone acceptor QA(-) and the primary photoxidized donor P(+); ii) the thermodynamic equilibrium (QA(-)↔QB(-)) for the ET between QA(-) and the secondary quinone acceptor QB. A distinctive point of this investigation is that reactants and products are overall electroneutral. The protein electrostatics has been described adopting the lowest level of complexity sufficient to grasp the experimental phenomenology and the impact of salt on the relative free energy level of reactants and products has been evaluated according to suitable thermodynamic cycles. The ionic strength effect was found to be independent on the ion nature for P(+)QA(-) charge recombination where the leading electrostatic term was the dipole moment. In the case of the QA(-)↔QB(-) equilibrium, the relative stability of QA(-) and QB(-) was found to depend on the salt concentration in a fashion that is different for chaotropic and kosmotropic ions. In such a case both dipole moment and quadrupole moments of the RC must be considered.


Subject(s)
Electron Transport , Photosynthetic Reaction Center Complex Proteins/chemistry , Rhodobacter sphaeroides/metabolism , Osmolar Concentration , Static Electricity , Thermodynamics
10.
Anal Chem ; 87(22): 11337-44, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26489723

ABSTRACT

A general method to obtain the efficient entrapment of mixtures of glycoenzymes in calcium alginate hydrogel is proposed in this paper. As a proof of principle, three glycoenzymes acting in series (trehalase, glucose oxidase, and horseradish peroxidase) have been coimmobilized in calcium alginate beads. The release of the enzymes from the hydrogel mesh (leakage) is avoided by exploiting the enzyme's aggregation induced by the concanavalin A. The aggregation process has been monitored by dynamic light scattering technique, while both enzyme encapsulation efficiency and leakage have been quantified spectrophotometrically. Obtained data show an encapsulation efficiency above 95% and a negligible leakage from the beads when enzyme aggregates are larger than 300 nm. Operational stability of "as prepared" beads has been largely improved by a coating of alternated shells of polycation poly(diallyldimethylammonium chloride) and of alginate. As a test for the effectiveness of the overall procedure, analytical bioassays exploiting the enzyme-containing beads have been developed for the optical determination of glucose and trehalose, and limit of detection values of 0.2 and of 40 µM, respectively, have been obtained.


Subject(s)
Alginates/metabolism , Biological Assay , Enzymes, Immobilized/metabolism , Glucose Oxidase/metabolism , Horseradish Peroxidase/metabolism , Trehalase/metabolism , Alginates/chemistry , Enzymes, Immobilized/chemistry , Glucose Oxidase/chemistry , Glucuronic Acid/chemistry , Glucuronic Acid/metabolism , Hexuronic Acids/chemistry , Hexuronic Acids/metabolism , Horseradish Peroxidase/chemistry , Particle Size , Surface Properties , Trehalase/chemistry
11.
Adv Mater ; 27(5): 911-6, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25376989

ABSTRACT

Electrolyte-gated organic field-effect transistors are successfully used as biosensors to detect binding events occurring at distances from the transistor electronic channel that are much larger than the Debye length in highly concentrated solutions. The sensing mechanism is mainly capacitive and is due to the formation of Donnan's equilibria within the protein layer, leading to an extra capacitance (CDON) in series to the gating system.


Subject(s)
Biosensing Techniques/instrumentation , Organic Chemicals/chemistry , Transistors, Electronic , Avidin/chemistry , Electrolytes/chemistry , Models, Molecular , Molecular Conformation , Osmolar Concentration , Streptavidin/chemistry , Thiophenes/chemistry
12.
ACS Nano ; 8(8): 7834-45, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25077939

ABSTRACT

An organic field-effect transistor (OFET) integrating bacteriorhodopsin (bR) nanoassembled lamellae is proposed for an in-depth study of the proton translocation processes occurring as the bioelectronic device is exposed either to light or to low concentrations of general anesthetic vapors. The study involves the morphological, structural, electrical, and spectroscopic characterizations necessary to assess the functional properties of the device as well as the bR biological activity once integrated into the functional biointerlayer (FBI)-OFET structure. The electronic transduction of the protons phototranslocation is shown as a current increase in the p-type channel only when the device is irradiated with photons known to trigger the bR photocycle, while Raman spectroscopy reveals an associated C═C isomer switch. Notably, higher energy photons bring the cis isomer back to its trans form, switching the proton pumping process off. The investigation is extended also to the study of a PM FBI-OFET exposed to volatile general anesthetics such as halothane. In this case an electronic current increase is seen upon exposure to low, clinically relevant, concentrations of anesthetics, while no evidence of isomer-switching is observed. The study of the direct electronic detection of the two different externally triggered proton translocation effects allows gathering insights into the underpinning of different bR molecular switching processes.


Subject(s)
Bacteriorhodopsins/chemistry , Nanotechnology/instrumentation , Protons , Transistors, Electronic , Halobacterium salinarum/cytology , Isomerism , Light , Models, Molecular , Polymers/chemistry , Protein Conformation , Purple Membrane/chemistry , Thiophenes/chemistry
13.
Adv Mater ; 25(14): 2090-4, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-23288589

ABSTRACT

Anchored, biotinylated phospholipids forming the capturing layers in an electrolyte-gated organic field-effect transistor (EGOFET) allow label-free electronic specific detection at a concentration level of 10 nM in a high ionic strength solution. The sensing mechanism is based on a clear capacitive effect across the PL layers involving the charges of the target molecules.


Subject(s)
Biotin/chemistry , Electrolytes/chemistry , Phospholipids/chemistry , Transistors, Electronic , Avidin/chemistry , Avidin/metabolism , Biosensing Techniques , Biotin/metabolism , Biotinylation , Osmolar Concentration
14.
Anal Chem ; 85(8): 3849-57, 2013 Apr 16.
Article in English | MEDLINE | ID: mdl-23323705

ABSTRACT

A Functional Bio-Interlayer Organic Field-Effect Transistor (FBI-OFET) sensor, embedding a streptavidin protein capturing layer, capable of performing label-free selective electronic detection of biotin at 3 part per trillion (mass fraction) or 15 pM, is proposed here. The response shows a logarithmic dependence spanning over 5 orders of magnitude of analyte concentration. The optimization of the FBI analytical performances is achieved by depositing the capturing layer through a controllable Layer-by-Layer (LbL) assembly, while an easy processable spin-coating deposition is proposed for potential low-cost production of equally highly performing sensors. Furthermore, a Langmuirian adsorption based model allows rationalizing the analyte binding process to the capturing layer. The FBI-OFET device is shown to operate also with an antibody interlayer as well as with an ad hoc designed microfluidic system. These occurrences, along with the proven extremely high sensitivity and selectivity, open to FBI-OFETs consideration as disposable electronic strip-tests for assays in biological fluids requiring very low detection limits.


Subject(s)
Biotin/analysis , Electrochemical Techniques/instrumentation , Streptavidin/chemistry , Adsorption , Antibodies/chemistry , Electrochemical Techniques/methods , Fluorescent Dyes , Immobilized Proteins/chemistry , Kinetics , Microfluidic Analytical Techniques , Reagent Strips , Sensitivity and Specificity , Transistors, Electronic
15.
Biosens Bioelectron ; 40(1): 303-7, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-22921091

ABSTRACT

The detailed action mechanism of volatile general anesthetics is still unknown despite their effect has been clinically exploited for more than a century. Long ago it was also assessed that the potency of an anesthetic molecule well correlates with its lipophilicity and phospholipids were eventually identified as mediators. As yet, the direct effect of volatile anesthetics at physiological relevant concentrations on membranes is still under scrutiny. Organic field-effect transistors (OFETs) integrating a phospholipid (PL) functional bio inter-layer (FBI) are here proposed for the electronic detection of archetypal volatile anesthetic molecules such as diethyl ether and halothane. This technology allows to directly interface a PL layer to an electronic transistor channel, and directly probe subtle changes occurring in the bio-layer. Repeatable responses of PL FBI-OFET to anesthetics are produced in a concentration range that reaches few percent, namely the clinically relevant regime. The PL FBI-OFET is also shown to deliver a comparably weaker response to a non-anesthetic volatile molecule such as acetone.


Subject(s)
Anesthetics, General/analysis , Biosensing Techniques/instrumentation , Conductometry/instrumentation , Membranes, Artificial , Phospholipids/chemistry , Transistors, Electronic , Volatile Organic Compounds/analysis , Equipment Design , Equipment Failure Analysis , Organic Chemicals/chemistry , Reproducibility of Results , Sensitivity and Specificity , Systems Integration
16.
Proc Natl Acad Sci U S A ; 109(17): 6429-34, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22493224

ABSTRACT

Biosystems integration into an organic field-effect transistor (OFET) structure is achieved by spin coating phospholipid or protein layers between the gate dielectric and the organic semiconductor. An architecture directly interfacing supported biological layers to the OFET channel is proposed and, strikingly, both the electronic properties and the biointerlayer functionality are fully retained. The platform bench tests involved OFETs integrating phospholipids and bacteriorhodopsin exposed to 1-5% anesthetic doses that reveal drug-induced changes in the lipid membrane. This result challenges the current anesthetic action model relying on the so far provided evidence that doses much higher than clinically relevant ones (2.4%) do not alter lipid bilayers' structure significantly. Furthermore, a streptavidin embedding OFET shows label-free biotin electronic detection at 10 parts-per-trillion concentration level, reaching state-of-the-art fluorescent assay performances. These examples show how the proposed bioelectronic platform, besides resulting in extremely performing biosensors, can open insights into biologically relevant phenomena involving membrane weak interfacial modifications.

17.
Photosynth Res ; 108(2-3): 133-42, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21785991

ABSTRACT

The bacterial reaction center (RC) has become a reference model in the study of the diverse interactions of quinones with electron transfer complexes. In these studies, the RC functionality was probed through flash-induced absorption changes where the state of the primary donor is probed by means of a continuous measuring beam and the electron transfer is triggered by a short intense light pulse. The single-beam set-up implies the use as reference of the transmittance measured before the light pulse. Implicit in the analysis of these data is the assumption that the measuring beam does not elicit the protein photochemistry. At variance, measuring beam is actinic in nature at almost all the suitable wavelengths. In this contribution, the analytical modelling of the time evolution of neutral and charge-separated RCs has been performed. The ability of measuring light to elicit RC photochemistry induces a first order growth of the charge-separated state up to a steady state that depends on the light intensity and on the occupation of the secondary quinone (Q(B)) site. Then the laser pulse pumps all the RCs in the charge-separated state. The following charge recombination is still affected by the measuring beam. Actually, the kinetics of charge recombination measured in RC preparation with the Q(B) site partially occupied are two-exponential. The rate constant of both fast and slow phases depends linearly on the intensity of the measuring beam while their relative weights depend not only on the fractions of RC with the Q(B) site occupied but also on the measuring light intensity itself.


Subject(s)
Light , Photochemical Processes/radiation effects , Photosynthetic Reaction Center Complex Proteins/metabolism , Rhodobacter sphaeroides/metabolism , Rhodobacter sphaeroides/radiation effects , Atrazine/pharmacology , Herbicides/pharmacology , Photobleaching/drug effects , Photobleaching/radiation effects , Photochemical Processes/drug effects , Photolysis/drug effects , Photolysis/radiation effects , Rhodobacter sphaeroides/drug effects , Time Factors
18.
Biosens Bioelectron ; 25(9): 2033-7, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20176470

ABSTRACT

Determination of phenolic derivatives is very important in medical, food and environmental samples because of their relevant significance in health care and pollution monitoring. Tyrosinase-based biosensors are promising tools for this purpose because of several advantages with respect to currently used detection methods. A key aspect in the development of a biosensor is the effective immobilization of the enzyme. In this work, ordered tyrosinase films on an optical transparent support were immobilized by a "layer-by-layer" (LbL) assembly, alternating the enzyme with the polycation polymer poly(dimethyldiallylammonium chloride). As confirmed by UV-vis spectroscopy, the LbL deposition allowed a high loading of enzyme. The immobilized tyrosinase functionality was proven and its kinetic parameters were spectrophotometrically determined. The prepared biosensor was used to optically detect the o-diphenolic compound l-3,4-dihydroxyphenyl-alanine (L-DOPA) and exhibited good repeatability and time stability. The sensing properties of the system were studied by means of both absorption and fluorescence spectroscopy. The bioassay based on the absorbance measurements gave a LOD of 23 microM and a linear response up to 350 microM. The bioassay based on the fluorescence measurements gave a LOD of 3 microM and a linear response in the range of tens of micromolar (the exact value depends on the number of mushroom tyrosinase layers). Biosensor sensitivity could be modulated varying the number of the immobilized enzyme layers.


Subject(s)
Biosensing Techniques , Monophenol Monooxygenase , Phenols/analysis , Agaricus/enzymology , Enzyme Stability , Enzymes, Immobilized , Levodopa/analysis , Phenols/chemistry , Polyethylenes , Quaternary Ammonium Compounds , Reproducibility of Results , Spectrometry, Fluorescence , Spectrophotometry
19.
Biochim Biophys Acta ; 1804(1): 137-46, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19786126

ABSTRACT

We report on the response of reaction center (RC) from Rhodobacter sphaeroides (an archetype of membrane proteins) to the exposure at high temperature. The RCs have been solubilized in aqueous solution of the detergent N,N-dimethyldodecylamine-N-oxide (LDAO). Changes in the protein conformation have been probed by monitoring the variation in the absorbance of the bacteriochlorine cofactors and modification in the efficiency of energy transfer from tryptophans to cofactors and among the cofactors (through fluorescence measurements). The RC aggregation taking place at high temperature has been investigated by means of dynamic light scattering. Two experimental protocols have been used: (i) isothermal kinetics, in which the time evolution of RC after a sudden increase of the temperature is probed, and (ii) T-scans, in which the RCs are heated at constant rate. The analysis of the results coming from both the experiments indicates that the minimal kinetic scheme requires an equilibrium step and an irreversible process. The irreversible step is characterized by a activation energy of 205+/-14 kJ/mol and is independent from the detergent concentration. Since the temperature dependence of the aggregation rate was found to obey to the same law, the aggregation process is unfolding-limited. On the other hand, the equilibrium process between the native and a partially unfolded conformations was found to be strongly dependent on the detergent concentration. Increasing the LDAO content from 0.025 to 0.5 wt.% decreases the melting temperature from 49 to 42 degrees C. This corresponds to a sizeable (22 kJ/mol at 25 degrees C) destabilization of the native conformation induced by the detergent. The nature of the aggregates formed by the denatured RCs depends on the temperature. For temperature below 60 degrees C compact aggregates are formed while at 60 degrees C the clusters are less dense with a scaling relation between mass and size close to that expected for diffusion-limited aggregation. The aggregate final sizes formed at different temperatures indicate the presence of an even number of proteins suggesting that these clusters are formed by aggregation of dimers.


Subject(s)
Detergents/pharmacology , Dimethylamines/pharmacology , Membrane Proteins/drug effects , Photosynthetic Reaction Center Complex Proteins/drug effects , Hot Temperature , Kinetics , Protein Denaturation/drug effects , Protein Stability/drug effects , Rhodobacter sphaeroides/metabolism
20.
J Colloid Interface Sci ; 325(2): 558-66, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18597761

ABSTRACT

Organic capped luminescent CdSe@ZnS nanocrystals (NCs) have been incorporated in block copolymer micelles, formed by polyethylene glycol modified phospholipids (PEG lipids). The obtained water soluble NC including PEG lipid micelles have been conjugated with bovine serum albumine (BSA). The entire process has been investigated by using optical, structural and electrophoretic complementary techniques. Such an integrated approach has allowed to elucidate critical issues, such as the time and temperature effects on the phase behavior of the PEG lipid/NC aggregate structures, the emitting properties of the NCs before and after micelle formation and bio-conjugation and the effect of conjugation on the biological moiety. The overall results provide relevant insight on the fabrication of the bio-conjugates, on their stability and on preparative procedure reproducibility, in view of the use of the resulting protein decorated NCs as multifunctional hybrid building blocks for the fabrication of a variety of supramolecular assemblies to exploit in biological sensing and diagnostic applications.


Subject(s)
Cadmium Compounds/chemistry , Micelles , Nanoparticles/chemistry , Phospholipids/chemistry , Selenium Compounds/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry , Light , Luminescence , Microscopy, Electron, Transmission , Scattering, Radiation , Serum Albumin, Bovine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...