Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38003214

ABSTRACT

This study investigated the antibiofilm activity of water-soluble extracts obtained under different pH conditions from Cannabis sativa seeds and from previously defatted seeds. The chemical composition of the extracts, determined through GC-MS and NMR, revealed complex mixtures of fatty acids, monosaccharides, amino acids and glycerol in ratios depending on extraction pH. In particular, the extract obtained at pH 7 from defatted seeds (Ex7d) contained a larger variety of sugars compared to the others. Saturated and unsaturated fatty acids were found in all of the analysed extracts, but linoleic acid (C18:2) was detected only in the extracts obtained at pH 7 and pH 10. The extracts did not show cytotoxicity to HaCaT cells and significantly inhibited the formation of Staphylococcus epidermidis biofilms. The exception was the extract obtained at pH 10, which appeared to be less active. Ex7d showed the highest antibiofilm activity, i.e., around 90%. Ex7d was further fractionated by HPLC, and the antibiofilm activity of all fractions was evaluated. The 2D-NMR analysis highlighted that the most active fraction was largely composed of glycerolipids. This evidence suggested that these molecules are probably responsible for the observed antibiofilm effect but does not exclude a possible synergistic contribution by the other components.


Subject(s)
Cannabis , Staphylococcus epidermidis , Cannabis/chemistry , Plant Extracts/pharmacology , Plant Extracts/analysis , Biofilms , Seeds/chemistry
2.
Molecules ; 28(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36770887

ABSTRACT

Composites made of linear low-density polyethylene (LLDPE) and ß-cyclodextrin/d-limonene inclusion complex (CD-lim) were prepared by melt extrusion to develop a novel food packaging material. Scanning electron microscopy evidenced a fairly good dispersion of the filler within the polymeric matrix. Infrared spectroscopy coupled with thermogravimetric analysis confirmed the presence of CD-lim in the composites, proving that the applied technology of including the essential oil within ß-CD cages allows for preventing a sizable loss of d-limonene despite a high temperature and shear applied upon extrusion processing. Moreover, the influence of the filler on the thermal properties of PE was assessed. It was found that the cyclodextrin-based inclusion complex significantly fastens the crystallization path of the polyethylene matrix with an improved crystallization rate of the PE/CD-lim composites compared to the neat polymer.

3.
Foods ; 10(11)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34828864

ABSTRACT

This study shows the chemical-physical and nutritional results obtained using food-grade sea water for the preparation of fresh pasta Gnocchi with respect to those prepared with tap water. Gnocchi obtained by mixing the flour with seawater (GSW) were compared with traditional Gnocchi made with tap water (GTW). The contents of sodium chloride, macro and micro elements, volatile molecules profile, thermal properties, and morphological analysis were investigated in both Gnocchi types. The analysis of chlorides showed that the samples prepared with sea water had a significantly lower NaCl content after cooking in comparison with those prepared with tap water. These results were also confirmed by the inductively coupled plasma (ICP) analysis for sodium content. The profiles of the volatile molecules acquired by gas chromatography-mass spectrometry (GC-MS) evidenced significant differences between the groups of aromatic molecules of the two typologies of samples. Morphological analysis evidenced that both raw and cooked GSW Gnocchi were structurally tightened whereas GTW Gnocchi showed a labile and weak macromolecular network. In addition, GSW Gnocchi was more thermally stable than GTW Gnocchi, as evidenced by thermogravimetric analysis (TGA).

4.
Materials (Basel) ; 14(10)2021 May 15.
Article in English | MEDLINE | ID: mdl-34063363

ABSTRACT

Bio-based composites made of poly(L-lactic acid) (PLLA) and ß-cyclodextrin/d-limonene inclusion complex (CD-Lim) were prepared by melt extrusion. Encapsulation of volatile d-limonene molecules within ß-cyclodextrin cages was proven to be a successful strategy to prevent evaporation during high-temperature processing. However, small amounts of limonene were released upon processing, resulting in the plasticization of the polymeric matrix. Morphological analysis revealed good dispersion of the filler, which acted as a nucleating agent, favoring the growth of PLLA crystals. The composites' lowered glass transition temperature upon the addition of CD-Lim was also proved by thermomechanical analysis (DMA). Moreover, DMA revealed constant stiffness of modified materials at room temperature, which is crucial in PLLA-based formulations.

5.
Carbohydr Polym ; 230: 115627, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31887941

ABSTRACT

In this study, chitosan (C) tripolyphosphate (T) sub-micro particles containing ungeremine (CTUn), an alkaloid particularly active against Penicilliumroqueforti, a fungus responsible of the bakery products deterioration, were prepared through external gelation crosslinking process. The particles were included in a thermoplastic starch based polymer Mater-Bi (MBi), and MBi/CTUn bioactive biocomposites were obtained. The films showed bioactivity against P. roqueforti. In particular, the bioassays were performed on films with different concentration of CTUn and at different pH values. CTUn particles influenced MBi crystallization (DSC analysis) and promoted thermal degradation of MBi starch component (TGA). Morphological analysis confirmed even distribution of sub-micro particles into the polymeric matrix. Water permeability slightly increased, as expected, whereas oxygen permeability decreased. Tensile tests showed CTUN sub-microparticles improved rigidity and tensile strength of the films at the expense of ductility. Finally, MBi/CTUn biocomposites evidenced interesting performances potentially exploitablein bioactive bakery based food packaging materials.


Subject(s)
Antifungal Agents/chemistry , Chitosan/analogs & derivatives , Starch/analogs & derivatives , Antifungal Agents/pharmacology , Food Packaging/methods , Nanocomposites/chemistry , Oxygen/chemistry , Penicillium/drug effects , Tensile Strength
6.
Food Chem ; 258: 104-110, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-29655710

ABSTRACT

In this paper, a novel and sustainable process for the fruit dehydration was described. Specifically, edible coatings based on pectin and honey were prepared and used as dehydrating and antimicrobial agents of cut fruit samples, in this way promoting the fruit preservation from irreversible deteriorative processes. Pectin-honey coating was tested on apple, cantaloupe melon, mango and pineapple. The analysis were performed also on uncoated dehydrated fruits (control). The coated fruit evidenced enhanced dehydration percentage, enriched polyphenol and vitamin C contents, improved antioxidant activity and volatile molecules profile. Moreover, the antimicrobial activity against Pseudomonas and Escherichia coli was assessed. Finally, morphological analysis performed on fruit fractured surface, highlighted the formation of a non-sticky and homogeneous thin layer. These outcomes suggested that the novel fruit dehydration process, performed by using pectin-honey coating, was able to both preserve the safety and quality of dehydrated fruits, and enhance their authenticity and naturalness.


Subject(s)
Food Preservatives/chemistry , Fruit/chemistry , Honey/analysis , Pectins/chemistry , Ascorbic Acid/chemistry , Escherichia coli/drug effects , Food Preservatives/pharmacology , Malus/chemistry , Malus/microbiology , Mangifera/chemistry , Mangifera/microbiology , Polyphenols/chemistry , Pseudomonas/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL