Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Nature ; 629(8010): 127-135, 2024 May.
Article in English | MEDLINE | ID: mdl-38658750

ABSTRACT

Phenotypic variation among species is a product of evolutionary changes to developmental programs1,2. However, how these changes generate novel morphological traits remains largely unclear. Here we studied the genomic and developmental basis of the mammalian gliding membrane, or patagium-an adaptative trait that has repeatedly evolved in different lineages, including in closely related marsupial species. Through comparative genomic analysis of 15 marsupial genomes, both from gliding and non-gliding species, we find that the Emx2 locus experienced lineage-specific patterns of accelerated cis-regulatory evolution in gliding species. By combining epigenomics, transcriptomics and in-pouch marsupial transgenics, we show that Emx2 is a critical upstream regulator of patagium development. Moreover, we identify different cis-regulatory elements that may be responsible for driving increased Emx2 expression levels in gliding species. Lastly, using mouse functional experiments, we find evidence that Emx2 expression patterns in gliders may have been modified from a pre-existing program found in all mammals. Together, our results suggest that patagia repeatedly originated through a process of convergent genomic evolution, whereby regulation of Emx2 was altered by distinct cis-regulatory elements in independently evolved species. Thus, different regulatory elements targeting the same key developmental gene may constitute an effective strategy by which natural selection has harnessed regulatory evolution in marsupial genomes to generate phenotypic novelty.


Subject(s)
Evolution, Molecular , Homeodomain Proteins , Locomotion , Marsupialia , Transcription Factors , Animals , Female , Male , Mice , Epigenomics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genome/genetics , Genomics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Locomotion/genetics , Marsupialia/anatomy & histology , Marsupialia/classification , Marsupialia/genetics , Marsupialia/growth & development , Phylogeny , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Phenotype , Humans
2.
Proc Natl Acad Sci U S A ; 120(45): e2312077120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37871159

ABSTRACT

Vertebrate groups have evolved strikingly diverse color patterns. However, it remains unknown to what extent the diversification of such patterns has been shaped by the proximate, developmental mechanisms that regulate their formation. While these developmental mechanisms have long been inaccessible empirically, here we take advantage of recent insights into rodent pattern formation to investigate the role of development in shaping pattern diversification across rodents. Based on a broad survey of museum specimens, we first establish that various rodents have independently evolved diverse patterns consisting of longitudinal stripes, varying across species in number, color, and relative positioning. We then interrogate this diversity using a simple model that incorporates recent molecular and developmental insights into stripe formation in African striped mice. Our results suggest that, on the one hand, development has facilitated pattern diversification: The diversity of patterns seen across species can be generated by a single developmental process, and small changes in this process suffice to recapitulate observed evolutionary changes in pattern organization. On the other hand, development has constrained diversification: Constraints on stripe positioning limit the scope of evolvable patterns, and although pattern organization appears at first glance phylogenetically unconstrained, development turns out to impose a cryptic constraint. Altogether, this work reveals that pattern diversification in rodents can in part be explained by the underlying development and illustrates how pattern formation models can be leveraged to interpret pattern evolution.


Subject(s)
Biological Evolution , Rodentia , Mice , Animals , Phylogeny
3.
Nat Ecol Evol ; 7(12): 2143-2159, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37813945

ABSTRACT

Animal pigment patterns are excellent models to elucidate mechanisms of biological organization. Although theoretical simulations, such as Turing reaction-diffusion systems, recapitulate many animal patterns, they are insufficient to account for those showing a high degree of spatial organization and reproducibility. Here, we study the coat of the African striped mouse (Rhabdomys pumilio) to uncover how periodic stripes form. Combining transcriptomics, mathematical modelling and mouse transgenics, we show that the Wnt modulator Sfrp2 regulates the distribution of hair follicles and establishes an embryonic prepattern that foreshadows pigment stripes. Moreover, by developing in vivo gene editing in striped mice, we find that Sfrp2 knockout is sufficient to alter the stripe pattern. Strikingly, mutants exhibited changes in pigmentation, revealing that Sfrp2 also regulates hair colour. Lastly, through evolutionary analyses, we find that striped mice have evolved lineage-specific changes in regulatory elements surrounding Sfrp2, many of which may be implicated in modulating the expression of this gene. Altogether, our results show that a single factor controls coat pattern formation by acting both as an orienting signalling mechanism and a modulator of pigmentation. More broadly, our work provides insights into how spatial patterns are established in developing embryos and the mechanisms by which phenotypic novelty originates.


Subject(s)
Pigmentation , Rodentia , Mice , Animals , Reproducibility of Results
4.
Cell Rep ; 42(8): 112980, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37573509

ABSTRACT

Rodents are taxonomically diverse and have evolved a variety of traits. A mechanistic understanding of such traits has remained elusive, however, largely because genome editing in non-traditional model species remains challenging. Here, using the African striped mouse (Rhabdomys pumilio), we describe TIGER (targeted in vivo genome editing in rodents), a method that relies on a simple intraoviductal injecting technique and uses recombinant adeno-associated viruses (rAAVs) as the sole vehicle to deliver reagents into pregnant females. We demonstrate that TIGER generates knockout and knockin (up to 3 kb) lines with high efficiency. Moreover, we engineer a double-cleaving repair rAAV template and find that it significantly increases knockin frequency and germline transmission rates. Lastly, we show that an oversized double-cleaving rAAV template leads to an insertion of 3.8 kb. Thus, TIGER constitutes an attractive alternative to traditional ex vivo genome-editing methods and has the potential to be extended to a broad range of species.


Subject(s)
Gene Editing , Animals , Female , Mice , Pregnancy , Gene Editing/methods , Rodentia/genetics
5.
Curr Biol ; 33(15): 3289-3298.e6, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37480852

ABSTRACT

Patterns of diel activity-how animals allocate their activity throughout the 24-h daily cycle-play key roles in shaping the internal physiology of an animal and its relationship with the external environment.1,2,3,4,5 Although shifts in diel activity patterns have occurred numerous times over the course of vertebrate evolution,6 the genomic correlates of such transitions remain unknown. Here, we use the African striped mouse (Rhabdomys pumilio), a species that transitioned from the ancestrally nocturnal diel niche of its close relatives to a diurnal one,7,8,9,10,11 to define patterns of naturally occurring molecular variation in diel niche traits. First, to facilitate genomic analyses, we generate a chromosome-level genome assembly of the striped mouse. Next, using transcriptomics, we show that the switch to daytime activity in this species is associated with a realignment of daily rhythms in peripheral tissues with respect to the light:dark cycle and the central circadian clock. To uncover selection pressures associated with this temporal niche shift, we perform comparative genomic analyses with closely related rodent species and find evidence of relaxation of purifying selection on striped mouse genes in the rod phototransduction pathway. In agreement with this, electroretinogram measurements demonstrate that striped mice have functional differences in dim-light visual responses compared with nocturnal rodents. Taken together, our results show that striped mice have undergone a drastic change in circadian organization and provide evidence that the visual system has been a major target of selection as this species transitioned to a novel temporal niche.


Subject(s)
Circadian Clocks , Circadian Rhythm , Mice , Animals , Circadian Rhythm/genetics , Rodentia/genetics , Photoperiod , Genomics
6.
Annu Rev Genet ; 57: 135-156, 2023 11 27.
Article in English | MEDLINE | ID: mdl-37487589

ABSTRACT

Vertebrates exhibit a wide range of color patterns, which play critical roles in mediating intra- and interspecific communication. Because of their diversity and visual accessibility, color patterns offer a unique and fascinating window into the processes underlying biological organization. In this review, we focus on describing many of the general principles governing the formation and evolution of color patterns in different vertebrate groups. We characterize the types of patterns, review the molecular and developmental mechanisms by which they originate, and discuss their role in constraining or facilitating evolutionary change. Lastly, we outline outstanding questions in the field and discuss different approaches that can be used to address them. Overall, we provide a unifying conceptual framework among vertebrate systems that may guide research into naturally evolved mechanisms underlying color pattern formation and evolution.


Subject(s)
Biological Evolution , Pigmentation , Animals , Pigmentation/genetics , Vertebrates/genetics
7.
Horm Behav ; 152: 105364, 2023 06.
Article in English | MEDLINE | ID: mdl-37087766

ABSTRACT

Parental care is diversely demonstrated across the animal kingdom, such that active practitioners and repertoires of parental behavior vary dramatically between and within taxa. For mammals, maternal care is ubiquitous while paternal and alloparental care are rare. The African striped mouse, a rodent species in the family Muridae, demonstrates maternal, paternal, and alloparental care. Because socio-environmental factors can considerably influence the development of their social behavior, including that of paternal and alloparental care, African striped mice are considered socially flexible. Here, we highlight African striped mice as a new model for the neurobiological study of male parental care. We first provide essential background information on the species' natural ecological setting and reproductive behavior, as well as the species-relevant interaction between ecology and reproduction. We then introduce the nature of maternal, paternal, and alloparental care in the species. Lastly, we provide a review of existing developmental and neurobiological perspectives and highlight potential avenues for future research.


Subject(s)
Murinae , Social Behavior , Animals , Mice , Male , Humans , Reproduction , Fathers
8.
Sci Adv ; 9(12): eade7511, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36961889

ABSTRACT

Lateral flight membranes, or patagia, have evolved repeatedly in diverse mammalian lineages. While little is known about patagium development, its recurrent evolution may suggest a shared molecular basis. By combining transcriptomics, developmental experiments, and mouse transgenics, we demonstrate that lateral Wnt5a expression in the marsupial sugar glider (Petaurus breviceps) promotes the differentiation of its patagium primordium. We further show that this function of Wnt5a reprises ancestral roles in skin morphogenesis predating mammalian flight and has been convergently used during patagium evolution in eutherian bats. Moreover, we find that many genes involved in limb development have been redeployed during patagium outgrowth in both the sugar glider and bat. Together, our findings reveal that deeply conserved genetic toolkits contribute to the evolutionary transition to flight in mammals.


Subject(s)
Chiroptera , Marsupialia , Mice , Animals , Mammals/genetics , Chiroptera/genetics , Organogenesis , Mice, Transgenic , Sugars , Biological Evolution
9.
J Exp Zool B Mol Dev Evol ; 340(2): 92-104, 2023 03.
Article in English | MEDLINE | ID: mdl-35344632

ABSTRACT

Organismal phenotypes result largely from inherited developmental programs, usually executed during embryonic and juvenile life stages. These programs are not blank slates onto which natural selection can draw arbitrary forms. Rather, the mechanisms of development play an integral role in shaping phenotypic diversity and help determine the evolutionary trajectories of species. Modern evolutionary biology must, therefore, account for these mechanisms in both theory and in practice. The gene regulatory network (GRN) concept represents a potent tool for achieving this goal whose utility has grown in tandem with advances in "omic" technologies and experimental techniques. However, while the GRN concept is widely utilized, it is often less clear what practical implications it has for conducting research in evolutionary developmental biology. In this Perspective, we attempt to provide clarity by discussing how experiments and projects can be designed in light of the GRN concept. We first map familiar biological notions onto the more abstract components of GRN models. We then review how diverse functional genomic approaches can be directed toward the goal of constructing such models and discuss current methods for functionally testing evolutionary hypotheses that arise from them. Finally, we show how the major steps of GRN model construction and experimental validation suggest generalizable workflows that can serve as a scaffold for project design. Taken together, the practical implications that we draw from the GRN concept provide a set of guideposts for studies aiming at unraveling the molecular basis of phenotypic diversity.


Subject(s)
Biological Evolution , Gene Regulatory Networks , Animals , Phenotype , Genomics , Developmental Biology
10.
Proc Natl Acad Sci U S A ; 119(27): e2202862119, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35776547

ABSTRACT

Identifying the genetic basis of repeatedly evolved traits provides a way to reconstruct their evolutionary history and ultimately investigate the predictability of evolution. Here, we focus on the oldfield mouse (Peromyscus polionotus), which occurs in the southeastern United States, where it exhibits considerable color variation. Dorsal coats range from dark brown in mainland mice to near white in mice inhabiting sandy beaches; this light pelage has evolved independently on Florida's Gulf and Atlantic coasts as camouflage from predators. To facilitate genomic analyses, we first generated a chromosome-level genome assembly of Peromyscus polionotus subgriseus. Next, in a uniquely variable mainland population (Peromyscus polionotus albifrons), we scored 23 pigment traits and performed targeted resequencing in 168 mice. We find that pigment variation is strongly associated with an ∼2-kb region ∼5 kb upstream of the Agouti signaling protein coding region. Using a reporter-gene assay, we demonstrate that this regulatory region contains an enhancer that drives expression in the dermis of mouse embryos during the establishment of pigment prepatterns. Moreover, extended tracts of homozygosity in this Agouti region indicate that the light allele experienced recent and strong positive selection. Notably, this same light allele appears fixed in both Gulf and Atlantic coast beach mice, despite these populations being separated by >1,000 km. Together, our results suggest that this identified Agouti enhancer allele has been maintained in mainland populations as standing genetic variation and from there, has spread to and been selected in two independent beach mouse lineages, thereby facilitating their rapid and parallel evolution.


Subject(s)
Agouti Signaling Protein , Biological Evolution , Enhancer Elements, Genetic , Peromyscus , Skin Pigmentation , Agouti Signaling Protein/metabolism , Alleles , Animals , Genes, Reporter , Peromyscus/genetics , Peromyscus/physiology , Skin Pigmentation/genetics
11.
Trends Ecol Evol ; 35(4): 357-366, 2020 04.
Article in English | MEDLINE | ID: mdl-31980234

ABSTRACT

Mammalian colors and color patterns are some of the most diverse and conspicuous traits found in nature and have been widely studied from genetic/developmental and evolutionary perspectives. In this review we first discuss the proximate causes underlying variation in pigment type (i.e., color) and pigment distribution (i.e., color pattern) and highlight both processes as having a distinct developmental basis. Then, using multiple examples, we discuss ultimate factors that have driven the evolution of coloration differences in mammals, which include background matching, intra- and interspecific signaling, and physiological influences. Throughout, we outline bridges between developmental and functional investigatory approaches that help broaden knowledge of mammals' memorable external appearances, and we point out areas for future interdisciplinary research.


Subject(s)
Mammals , Pigmentation , Animals , Biological Evolution , Color , Mammals/genetics , Phenotype , Pigmentation/genetics
12.
Science ; 363(6426): 499-504, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30705186

ABSTRACT

Adaptive evolution in new or changing environments can be difficult to predict because the functional connections between genotype, phenotype, and fitness are complex. Here, we make these explicit connections by combining field and laboratory experiments in wild mice. We first directly estimate natural selection on pigmentation traits and an underlying pigment locus, Agouti, by using experimental enclosures of mice on different soil colors. Next, we show how a mutation in Agouti associated with survival causes lighter coat color through changes in its protein binding properties. Together, our findings demonstrate how a sequence variant alters phenotype and then reveal the ensuing ecological consequences that drive changes in population allele frequency, thereby illuminating the process of evolution by natural selection.


Subject(s)
Agouti Signaling Protein/genetics , Hair Color/genetics , Peromyscus/genetics , Selection, Genetic , Animals , Gene Frequency , Genotype , Melanins/analysis , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Nebraska , Phenotype , Pigmentation/genetics , Sequence Deletion
13.
Exp Dermatol ; 28(4): 509-513, 2019 04.
Article in English | MEDLINE | ID: mdl-30506729

ABSTRACT

Mammalian periodic pigment patterns, such as spots and stripes, have long interested mathematicians and biologists because they arise from non-random developmental processes that are programmed to be spatially constrained, and can therefore be used as a model to understand how organized morphological structures develop. Despite such interest, the developmental and molecular processes underlying their formation remain poorly understood. Here, we argue that Arvicanthines, a clade of African rodents that naturally evolved a remarkable array of coat patterns, represent a tractable model system in which to dissect the mechanistic basis of pigment pattern formation. Indeed, we review recent insights into the process of stripe formation that were obtained using an Arvicanthine species, the African striped mouse (Rhabdomys pumilio), and discuss how these rodents can be used to probe deeply into our understanding of the factors that specify and implement positional information in the skin. By combining naturally evolved pigment pattern variation in rodents with classic and novel experimental approaches, we can substantially advance our understanding of the processes by which spatial patterns of cell differentiation are established during embryogenesis, a fundamental question in developmental biology.


Subject(s)
Biological Evolution , Rodentia/embryology , Skin Pigmentation , Animals
14.
Nat Commun ; 9(1): 4338, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30337532

ABSTRACT

The emergence of eusociality represents a major evolutionary transition from solitary to group reproduction. The most commonly studied eusocial species, honey bees and ants, represent the behavioral extremes of social evolution but lack close relatives that are non-social. Unlike these species, the halictid bee Lasioglossum albipes produces both solitary and eusocial nests and this intraspecific variation has a genetic basis. Here, we identify genetic variants associated with this polymorphism, including one located in the intron of syntaxin 1a (syx1a), a gene that mediates synaptic vesicle release. We show that this variant can alter gene expression in a pattern consistent with differences between social and solitary bees. Surprisingly, syx1a and several other genes associated with sociality in L. albipes have also been implicated in autism spectrum disorder in humans. Thus, genes underlying behavioral variation in L. albipes may also shape social behaviors across a wide range of taxa, including humans.


Subject(s)
Bees/genetics , Polymorphism, Genetic , Social Behavior , Animals , Conserved Sequence/genetics , France , Gene Expression Regulation , Genetic Loci , Genome, Insect , Geography , Humans , Introns/genetics , Open Reading Frames/genetics
15.
Elife ; 72018 07 17.
Article in English | MEDLINE | ID: mdl-30015614

ABSTRACT

Analyzing the genomes of rock pigeons demonstrates that genetic variation comes in many forms and can have unexpected origins.


Subject(s)
Alleles , Columbidae/genetics , Animals , Mutation, Missense
16.
Curr Biol ; 28(7): R299-R301, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29614283

ABSTRACT

Mallarino et al. introduce the African striped mouse, which is being used in a number of fields of research, including animal behavior, evolutionary developmental biology, and chronobiology.


Subject(s)
Behavior, Animal , Mice/classification , Animals , Biological Evolution , Body Patterning , Chronobiology Phenomena , Developmental Biology , Mice/genetics , Mice/physiology , Social Behavior
17.
Sci Rep ; 7: 45966, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28387233

ABSTRACT

The Neotropics harbour the most diverse flora and fauna on Earth. The Andes are a major centre of diversification and source of diversity for adjacent areas in plants and vertebrates, but studies on insects remain scarce, even though they constitute the largest fraction of terrestrial biodiversity. Here, we combine molecular and morphological characters to generate a dated phylogeny of the butterfly genus Pteronymia (Nymphalidae: Danainae), which we use to infer spatial, elevational and temporal diversification patterns. We first propose six taxonomic changes that raise the generic species total to 53, making Pteronymia the most diverse genus of the tribe Ithomiini. Our biogeographic reconstruction shows that Pteronymia originated in the Northern Andes, where it diversified extensively. Some lineages colonized lowlands and adjacent montane areas, but diversification in those areas remained scarce. The recent colonization of lowland areas was reflected by an increase in the rate of evolution of species' elevational ranges towards present. By contrast, speciation rate decelerated with time, with no extinction. The geological history of the Andes and adjacent regions have likely contributed to Pteronymia diversification by providing compartmentalized habitats and an array of biotic and abiotic conditions, and by limiting dispersal between some areas while promoting interchange across others.


Subject(s)
Biodiversity , Butterflies/physiology , Animals , Butterflies/anatomy & histology , Butterflies/classification , Calibration , Genetic Speciation , Likelihood Functions , Phylogeny , Phylogeography , Species Specificity , Time Factors
18.
Mol Ecol ; 26(1): 245-258, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27105018

ABSTRACT

A central goal of evolutionary biology is to understand the molecular mechanisms underlying phenotypic adaptation. While the contribution of protein-coding and cis-regulatory mutations to adaptive traits has been well documented, additional sources of variation - such as the production of alternative RNA transcripts from a single gene, or isoforms - have been understudied. Here, we focus on the pigmentation gene Agouti, known to express multiple alternative transcripts, to investigate the role of isoform usage in the evolution of cryptic colour phenotypes in deer mice (genus Peromyscus). We first characterize the Agouti isoforms expressed in the Peromyscus skin and find two novel isoforms not previously identified in Mus. Next, we show that a locally adapted light-coloured population of P. maniculatus living on the Nebraska Sand Hills shows an upregulation of a single Agouti isoform, termed 1C, compared with their ancestral dark-coloured conspecifics. Using in vitro assays, we show that this preference for isoform 1C may be driven by isoform-specific differences in translation. In addition, using an admixed population of wild-caught mice, we find that variation in overall Agouti expression maps to a region near exon 1C, which also has patterns of nucleotide variation consistent with strong positive selection. Finally, we show that the independent evolution of cryptic light pigmentation in a different species, P. polionotus, has been driven by a preference for the same Agouti isoform. Together, these findings present an example of the role of alternative transcript processing in adaptation and demonstrate molecular convergence at the level of isoform regulation.


Subject(s)
Peromyscus/genetics , Pigmentation , Protein Isoforms/genetics , Animals , Mutation , Nebraska , Phenotype
19.
Nature ; 539(7630): 518-523, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27806375

ABSTRACT

Mammalian colour patterns are among the most recognizable characteristics found in nature and can have a profound impact on fitness. However, little is known about the mechanisms underlying the formation and subsequent evolution of these patterns. Here we show that, in the African striped mouse (Rhabdomys pumilio), periodic dorsal stripes result from underlying differences in melanocyte maturation, which give rise to spatial variation in hair colour. We identify the transcription factor ALX3 as a regulator of this process. In embryonic dorsal skin, patterned expression of Alx3 precedes pigment stripes and acts to directly repress Mitf, a master regulator of melanocyte differentiation, thereby giving rise to light-coloured hair. Moreover, Alx3 is upregulated in the light stripes of chipmunks, which have independently evolved a similar dorsal pattern. Our results show a previously undescribed mechanism for modulating spatial variation in hair colour and provide insights into how phenotypic novelty evolves.


Subject(s)
Body Patterning , Gene Expression Regulation, Developmental , Hair Color , Murinae/embryology , Murinae/genetics , Animals , Biological Evolution , Body Patterning/genetics , Cell Differentiation , Hair Color/genetics , Homeodomain Proteins/metabolism , Melanins/biosynthesis , Melanocytes/cytology , Melanocytes/metabolism , Mice , Microphthalmia-Associated Transcription Factor/antagonists & inhibitors , Microphthalmia-Associated Transcription Factor/metabolism , Murinae/physiology , Phenotype , Promoter Regions, Genetic/genetics , Sciuridae/genetics , Skin/embryology
20.
Curr Opin Genet Dev ; 39: 182-186, 2016 08.
Article in English | MEDLINE | ID: mdl-27639098

ABSTRACT

For decades, mammalian developmental genetic studies have focused almost entirely on two laboratory models: Mus and Rattus, species that breed readily in the laboratory and for which a wealth of molecular and genetic resources exist. These species alone, however, do not capture the remarkable diversity of morphological, behavioural and physiological traits seen across rodents, a group that represents >40% of all mammal species. Due to new advances in molecular tools and genomic technologies, studying the developmental events underlying natural variation in a wide range of species for a wide range of traits has become increasingly feasible. Here we review several recent studies and discuss how they not only provided technical resources for newly emerging rodent models in developmental genetics but also are instrumental in further encouraging scientists, from a wide range of research fields, to capitalize on the great diversity in development that has evolved among rodents.


Subject(s)
Developmental Biology , Genomics , Rodentia/genetics , Animals , Mice , Phenotype , Rats , Rodentia/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...