Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Antioxidants (Basel) ; 13(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38790688

ABSTRACT

Atherosclerosis is a complex condition that involves the accumulation of lipids and subsequent plaque formation in the arterial intima. There are various stimuli, cellular receptors, and pathways involved in this process, but oxidative modifications of low-density lipoprotein (ox-LDL) are particularly important in the onset and progression of atherosclerosis. Ox-LDLs promote foam-cell formation, activate proinflammatory pathways, and induce smooth-muscle-cell migration, apoptosis, and cell death. One of the major receptors for ox-LDL is LOX-1, which is upregulated in several cardiovascular diseases, including atherosclerosis. LOX-1 activation in endothelial cells promotes endothelial dysfunction and induces pro-atherogenic signaling, leading to plaque formation. The binding of ox-LDLs to LOX-1 increases the generation of reactive oxygen species (ROS), which can induce LOX-1 expression and oxidize LDLs, contributing to ox-LDL generation and further upregulating LOX-1 expression. This creates a vicious circle that is amplified in pathological conditions characterized by high plasma levels of LDLs. Although LOX-1 has harmful effects, the clinical significance of inhibiting this protein remains unclear. Further studies both in vitro and in vivo are needed to determine whether LOX-1 inhibition could be a potential therapeutic target to counteract the atherosclerotic process.

2.
Eur J Prev Cardiol ; 30(Suppl 2): ii2-ii8, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37819226

ABSTRACT

In this review, we describe the structure and function of the alveolar-capillary membrane and the identification of a novel potential marker of its integrity in the context of heart failure (HF). The alveolar-capillary membrane is indeed a crucial structure for the maintenance of the lung parenchyma gas exchange capacity, and the occurrence of pathological conditions determining lung fluids accumulation, such as HF, might significantly impair lung diffusion capacity altering the alveolar-capillary membrane protective functions. In the years, we found that the presence of immature forms of the surfactant protein-type B (proSP-B) in the circulation reflects alterations in the alveolar-capillary membrane integrity. We discussed our main achievements showing that proSP-B, due to its chemical properties, specifically binds to high-density lipoprotein, impairing their antioxidant activity, and likely contributing to the progression of the disease. Further, we found that immature proSP-B, not the mature protein, is related to lung abnormalities, more precisely than the lung function parameters. Thus, to the list of the potential proposed markers of HF, we add proSP-B, which represents a precise marker of alveolar-capillary membrane dysfunction in HF, correlates with prognosis, and represents a precocious marker of drug therapy.


Subject(s)
Heart Failure , Humans , Heart Failure/diagnosis , Heart Failure/drug therapy , Pulmonary Gas Exchange , Prognosis , Lung , Antioxidants/therapeutic use
3.
Biomedicines ; 11(4)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37189655

ABSTRACT

Sacubitril/Valsartan, used for the treatment of heart failure (HF), is a combination of two drugs, an angiotensin receptor inhibitor, and a neprilysin inhibitor, which activates vasoactive peptides. Even though its beneficial effects on cardiac functions have been demonstrated, the mechanisms underpinning these effects remain poorly understood. To achieve more mechanistic insights, we analyzed the profiles of circulating miRNAs in plasma from patients with stable HF with reduced ejection function (HFrEF) and treated with Sacubitril/Valsartan for six months. miRNAs are short (22-24 nt) non-coding RNAs, which are not only emerging as sensitive and stable biomarkers for various diseases but also participate in the regulation of several biological processes. We found that in patients with high levels of miRNAs, specifically miR-29b-3p, miR-221-3p, and miR-503-5p, Sacubitril/Valsartan significantly reduced their levels at follow-up. We also found a significant negative correlation of miR-29b-3p, miR-221-3p, and miR-503-5p with VO2 at peak exercise, whose levels decrease with HF severity. Furthermore, from a functional point of view, miR-29b-3p, miR-221-3p, and miR-503-5p all target Phosphoinositide-3-Kinase Regulatory Subunit 1, which encodes regulatory subunit 1 of phosphoinositide-3-kinase. Our findings support that an additional mechanism through which Sacubitril/Valsartan exerts its functions is the modulation of miRNAs with potentially relevant roles in HFrEF pathophysiology.

4.
Antioxidants (Basel) ; 12(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36978789

ABSTRACT

The process of adipogenesis involves the differentiation of preadipocytes into mature adipocytes. Excessive adipogenesis promotes obesity, a condition that increasingly threatens global health and contributes to the rapid rise of obesity-related diseases. We have recently shown that prenylcysteine oxidase 1 (PCYOX1) is a regulator of atherosclerosis-disease mechanisms, which acts through mechanisms not exclusively related to its pro-oxidant activity. To address the role of PCYOX1 in the adipogenic process, we extended our previous observations confirming that Pcyox1-/-/Apoe-/- mice fed a high-fat diet for 8 or 12 weeks showed significantly lower body weight, when compared to Pcyox1+/+/Apoe-/- mice, due to an evident reduction in visceral adipose content. We herein assessed the role of PCYOX1 in adipogenesis. Here, we found that PCYOX1 is expressed in adipose tissue, and, independently from its pro-oxidant enzymatic activity, is critical for adipogenesis. Pcyox1 gene silencing completely prevented the differentiation of 3T3-L1 preadipocytes, by acting as an upstream regulator of several key players, such as FABP4, PPARγ, C/EBPα. Proteomic analysis, performed by quantitative label-free mass spectrometry, further strengthened the role of PCYOX1 in adipogenesis by expanding the list of its downstream targets. Finally, the absence of Pcyox1 reduces the inflammatory markers in adipose tissue. These findings render PCYOX1 a novel adipogenic factor with possible pathophysiological or therapeutic potential.

5.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36768933

ABSTRACT

Macrophages are heterogeneous and plastic cells, able to adapt their phenotype and functions to changes in the microenvironment. They are involved in several homeostatic processes and also in many human diseases, including atherosclerosis, where they participate in all the stages of the disease. For these reasons, macrophages have been studied extensively using different approaches, including proteomics. Proteomics, indeed, may be a powerful tool to better understand the behavior of these cells, and a careful analysis of the proteome of different macrophage phenotypes can help to better characterize the role of these phenotypes in atherosclerosis and provide a broad view of proteins that might potentially affect the course of the disease. In this review, we discuss the different proteomic techniques that have been used to delineate the proteomic profile of macrophage phenotypes and summarize some results that can help to elucidate the roles of macrophages and develop new strategies to counteract the progression of atherosclerosis and/or promote regression.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Humans , Proteomics , Atherosclerosis/metabolism , Macrophages/metabolism , Phenotype , Proteome/metabolism , Plaque, Atherosclerotic/metabolism , Macrophage Activation
6.
Mass Spectrom Rev ; 42(4): 1113-1128, 2023.
Article in English | MEDLINE | ID: mdl-34747521

ABSTRACT

The Human Plasma Proteome has always been the most investigated compartment in proteomics-based biomarker discovery, and is considered the largest and deepest version of the human proteome, reflecting the state of the body in health and disease. Even if efforts have been always dedicated to the refinement of proteomic approaches to investigate more deeply the plasma proteome, it should not be forgotten that also highly abundant plasma proteins, like human serum albumin (HSA), often neglected in these studies, might provide fundamental physiological functions in plasma, and should be better considered. This review summarizes the important roles of HSA in the context of cardiovascular diseases (CVD), and in particular in heart failure. Notwithstanding much attention has been historically directed toward the association of HSA levels and CVD risk, the advances in the field of mass spectrometry research allow also a better characterization of the effects of oxidative modifications that could alter not only the structure but also the function of HSA.


Subject(s)
Albumins , Cardiovascular Diseases , Heart Failure , Humans , Proteome/metabolism , Proteomics
7.
Mass Spectrom Rev ; 42(4): 1397-1423, 2023.
Article in English | MEDLINE | ID: mdl-34747518

ABSTRACT

The complexity of cardiovascular diseases (CVDs), which remains the leading cause of death worldwide, makes the current clinical pathway for cardiovascular risk assessment unsatisfactory, as there remains a substantial unexplained residual risk. Simultaneous assessment of a large number of plasma proteins may be a promising tool to further refine risk assessment, and lipoprotein-associated proteins have the potential to fill this gap. Technical advances now allow for high-throughput proteomic analysis in a reproducible and cost-effective manner. Proteomics has great potential to identify and quantify hundreds of candidate marker proteins in a sample and allows the translation from isolated lipoproteins to whole plasma, thus providing an individual multiplexed proteomic fingerprint. This narrative review describes the pathophysiological roles of atherogenic apoB-containing lipoproteins and the recent advances in their mass spectrometry-based proteomic characterization and quantitation for better refinement of CVD risk assessment.


Subject(s)
Apolipoproteins B , Cardiovascular Diseases , Humans , Proteomics , Lipoproteins , Mass Spectrometry
8.
Biomolecules ; 11(4)2021 04 09.
Article in English | MEDLINE | ID: mdl-33918772

ABSTRACT

Cigarette smoking is a major independent risk factor for cardiovascular diseases (CVD). The underlying mechanisms, however, are not clearly understood. Lungs are the primary route of exposure to smoke, with pulmonary cells and surfactant being the first structures directly exposed, resulting in the leakage of the immature proteoform of surfactant protein B (proSP-B). Herein, we evaluated whether proSP-B joined the cargo of high-density lipoprotein (HDL) proteins in healthy young subjects (n = 106) without any CVD risk factor other than smoking, and if HDL-associated proSP-B (HDL-SPB) correlated with pulmonary function parameters, systemic inflammation, and oxidative stress. At univariable analysis, HDL-SPB resulted significantly higher in smokers (2.2-fold, p < 0.001) than in non-smokers. No significant differences have been detected between smokers and non-smokers for inflammation, oxidation variables, and alveolar-capillary diffusion markers. In a multivariable model, HDL-SPB was independently associated with smoking. In conclusion, HDL-SPB is not only a precocious and sensitive index of the acute effects of smoke, but it might be also a potential causal factor in the onset of the vascular damage induced by modified HDL. These findings contribute to the emerging concept that the quality of the HDL proteome, rather than the quantity of particles, plays a central role in CVD risk protection.


Subject(s)
Lung/physiology , Pulmonary Surfactant-Associated Protein B/blood , Tobacco Smoking/adverse effects , Adult , Cardiometabolic Risk Factors , Female , Humans , Lipoproteins, HDL/blood , Lung/metabolism , Male , Oxidative Stress , Respiratory Function Tests , Tobacco Smoking/blood
9.
Int J Mol Sci ; 22(2)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467687

ABSTRACT

Heart failure (HF) is a complex disease due to the intricate interplay of several mechanisms, which therefore implies the need for a multimarker strategy to better personalize the care of patients with HF. In this study, we developed a targeted mass spectrometry approach based on multiple reaction monitoring (MRM) to measure multiple circulating protein biomarkers, involved in cardiovascular disease, to address their relevance in the human HF, intending to assess the feasibility of the workflow in the disease monitoring and risk stratification. In this study, we analyzed a total of 60 plasma proteins in 30 plasma samples from eight control subjects and 22 age- and gender- matched HF patients. We identified a panel of four plasma proteins, namely Neuropilin-2, Beta 2 microglobulin, alpha-1-antichymotrypsin, and complement component C9, that were more abundant in HF patients in relation to disease severity and pulmonary dysfunction. Moreover, we showed the ability of the combination of these candidate proteins to discriminate, with sufficient accuracy, HF patients from healthy subjects. In conclusion, we demonstrated the feasibility and potential of a proteomic workflow based on MRM mass spectrometry for the evaluation of multiple proteins in human plasma and the identification of a panel of biomarkers of HF severity.


Subject(s)
Biomarkers/analysis , Heart Failure/blood , Proteomics/methods , Adult , Aged , Case-Control Studies , Complement C9/analysis , Female , Humans , Linear Models , Male , Mass Spectrometry , Middle Aged , Neuropilin-2/analysis , Oxygen Consumption , Proteome , Risk , alpha 1-Antitrypsin/analysis , beta 2-Microglobulin/analysis
10.
Diagnostics (Basel) ; 10(10)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086718

ABSTRACT

Extracellular vesicles (EVs) are lipid-bound vesicles released from cells under physiological and pathological conditions. Basing on biogenesis, dimension, content and route of secretion, they can be classified into exosomes, microvesicles (MVs) and apoptotic bodies. EVs have a key role as bioactive mediators in intercellular communication, but they are also involved in other physiological processes like immune response, blood coagulation, and tissue repair. The interest in studying EVs has increased over the years due to their involvement in several diseases, such as cardiovascular diseases (CVDs), and their potential role as biomarkers in diagnosis, therapy, and in drug delivery system development. Nowadays, the improvement of mass spectrometry (MS)-based techniques allows the characterization of the EV protein composition to deeply understand their role in several diseases. In this review, a critical overview is provided on the EV's origin and physical properties, as well as their emerging functional role in both physiological and disease conditions, focusing attention on the role of exosomes in CVDs. The most important cardiac exosome proteomic studies will be discussed giving a qualitative and quantitative characterization of the exosomal proteins that could be used in future as new potential diagnostic markers or targets for specific therapies.

11.
Antioxidants (Basel) ; 9(8)2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32824562

ABSTRACT

Human serum albumin (HSA) is associated with several physiological functions, such as maintaining oncotic pressure and microvascular integrity, among others. It also represents the major and predominant antioxidant in plasma due to the presence of the Cys34 sulfhydryl group. In this study, we assessed qualitative and quantitative changes in HSA in patients with heart failure (HF) and their relationship with the severity of the disease. We detected by means of mass spectrometry a global decrease of the HSA content in the plasma of HF patients in respect to control subjects, a significant increase of thio-HSA with a concomitant decrease in the reduced form of albumin. Cysteine and, at a lesser extent, homocysteine represent the most abundant thiol bound to HSA. A strong inverse correlation was also observed between cysteine-HSA and peak VO2/kg, an index of oxygen consumption associated with HF severity. Moreover, in HL-1 cardiomyocytes incubated with H2O2, we showed a significant decrease of cell viability in cells treated with thio-HSA in respect to restored native-HSA. In conclusion, we found for the first time that S-thiolation of albumin is increased in the plasma of HF patients and induced changes in the structure and antioxidant function of HSA, likely contributing to HF progression.

12.
Int J Mol Sci ; 21(12)2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32630608

ABSTRACT

Platelets are a heterogeneous small anucleate blood cell population with a central role both in physiological haemostasis and in pathological states, spanning from thrombosis to inflammation, and cancer. Recent advances in proteomic studies provided additional important information concerning the platelet biology and the response of platelets to several pathophysiological pathways. Platelets circulate systemically and can be easily isolated from human samples, making proteomic application very interesting for characterizing the complexity of platelet functions in health and disease as well as for identifying and quantifying potential platelet proteins as biomarkers and novel antiplatelet therapeutic targets. To date, the highly dynamic protein content of platelets has been studied in resting and activated platelets, and several subproteomes have been characterized including platelet-derived microparticles, platelet granules, platelet releasates, platelet membrane proteins, and specific platelet post-translational modifications. In this review, a critical overview is provided on principal platelet proteomic studies focused on platelet biology from signaling to granules content, platelet proteome changes in several diseases, and the impact of drugs on platelet functions. Moreover, recent advances in quantitative platelet proteomics are discussed, emphasizing the importance of targeted quantification methods for more precise, robust and accurate quantification of selected proteins, which might be used as biomarkers for disease diagnosis, prognosis and therapy, and their strong clinical impact in the near future.


Subject(s)
Blood Platelets/metabolism , Blood Platelets/physiology , Biomarkers/metabolism , Humans , Platelet Activation , Platelet Aggregation Inhibitors/metabolism , Platelet Aggregation Inhibitors/pharmacology , Protein Processing, Post-Translational , Proteome/metabolism , Proteomics/methods , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...