Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Hum Genomics ; 18(1): 52, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790075

ABSTRACT

The recent article by Harit et al. in Human Genomics reported a novel association of the C allele of rs479200 in the human EGLN1 gene with severe COVID-19 in Indian patients. The gene in context is an oxygen-sensor gene whose T allele has been reported to contribute to the inability to cope with hypoxia due to increased expression of the EGLN1 gene and therefore persons with TT genotype of EGLN1 rs479200 are more susceptible to severe manifestations of hypoxia. In contrast to this dogma, Harit et al. showed that the C allele is associated with the worsening of COVID-19 hypoxia without suggesting or even discussing the scientific plausibility of the association. The article also suffers from certain epidemiological, statistical, and mathematical issues that need to be critically elaborated and discussed. In this context, the findings of Harit et al. may be re-evaluated.


Subject(s)
Alleles , COVID-19 , Genetic Predisposition to Disease , Hypoxia-Inducible Factor-Proline Dioxygenases , SARS-CoV-2 , Humans , COVID-19/genetics , COVID-19/epidemiology , COVID-19/virology , India/epidemiology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Polymorphism, Single Nucleotide/genetics , Severity of Illness Index , Hypoxia/genetics , Genotype
2.
medRxiv ; 2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37066213

ABSTRACT

Background: Tracking the emergence and spread of antimalarial drug resistance has become critical to sustaining progress towards the control and eventual elimination of malaria in South Asia, especially India. Methods: An amplicon sequencing protocol was used for high-throughput molecular surveillance of antimalarial drug resistance in a total of 158 isolates at three sites in India: Chennai, Nadiad and Rourkela. Five genes of the Plasmodium falciparum implicated in antimalarial resistance were investigated here; Pfcrt for chloroquine resistance, Pfdhfr for pyrimethamine resistance, Pfdhps for sulfadoxine resistance, Pfk13 for artemisinin resistance and Pfmdr1 for resistance to multiple antimalarials. Results: Mutations in the propeller domain of PfK13 were observed in two samples only, however these mutations are not validated for artemisinin resistance. A high proportion of parasites from the P. falciparum dominant site Rourkela showed wild-type Pfcrt and Pfdhfr haplotypes, while mutant Pfcrt and Pfdhfr haplotypes were fixed at the P. vivax dominant sites Chennai and Nadiad. The wild-type PfDHPS haplotype was predominant across all study sites. Finally, we observed the largest proportion of suspected multi-clonal infections at Rourkela, which has the highest transmission of P. falciparum among our study sites. Conclusion: This is the first simultaneous high-throughput next generation sequencing of five complete P. falciparum genes from infected patients in India.

3.
Emerg Infect Dis ; 29(1): 36-44, 2023 01.
Article in English | MEDLINE | ID: mdl-36573521

ABSTRACT

Reports of the expansion of the Asia malaria vector Anopheles stephensi mosquito into new geographic areas are increasing, which poses a threat to the elimination of urban malaria. Efficient surveillance of this vector in affected areas and early detection in new geographic areas is key to containing and controlling this species. To overcome the practical difficulties associated with the morphological identification of immature stages and adults of An. stephensi mosquitoes, we developed a species-specific PCR and a real-time PCR targeting a unique segment of the second internal transcribed spacer lacking homology to any other organism. Both PCRs can be used to identify An. stephensi mosquitoes individually or in pooled samples of mixed species, including when present in extremely low proportions (1:500). This study also reports a method for selective amplification and sequencing of partial ribosomal DNA from An. stephensi mosquitoes for their confirmation in pooled samples of mixed species.


Subject(s)
Anopheles , Malaria , Animals , Anopheles/genetics , Malaria/epidemiology , Mosquito Vectors , Polymerase Chain Reaction , DNA, Ribosomal
4.
Med Vet Entomol ; 37(2): 209-212, 2023 06.
Article in English | MEDLINE | ID: mdl-35822871

ABSTRACT

There are at least three known knockdown resistance (kdr) mutations reported globally in the human head louse Pediculus humanus capitis De Geer (Phthiraptera: Anoplura) that are associated with reduced sensitivity to pyrethroids. However, the prevalence of kdr mutation in head lice is not known in the Indian subcontinent. To identify kdr mutations in the Indian head lice population, the genomic region of the voltage-gated sodium channel gene encompassing IIS1-2 linker to IIS6 segments was PCR-amplified and sequenced from P. humanus capitis samples collected from different geographic localities of India. DNA sequencing revealed the presence of four kdr mutations: M827I, T929I, L932F and L1014F. The presence of a classical kdr mutation L1014F, the most widely reported mutation across insect-taxa associated with the kdr-trait, is being reported for the first time in P. humanus capitis.


Subject(s)
Insecticides , Lice Infestations , Pediculus , Pyrethrins , Humans , Animals , Pediculus/genetics , Insecticide Resistance/genetics , Lice Infestations/veterinary , Mutation , Insecticides/pharmacology , Vascular Endothelial Growth Factor Receptor-2/genetics
5.
Med Vet Entomol ; 36(2): 194-202, 2022 06.
Article in English | MEDLINE | ID: mdl-35182085

ABSTRACT

Anopheles fluviatilis James (Diptera: Culicidae) represents a complex that comprises four sibling species (S, T, U, and V). Among these, species T is widely distributed in India. Chromosomal inversion polymorphism exists among different geographic populations of An. fluviatilis species T; however, population genetic structure is not understood. This study inferred a genetic structure among six geographically diverse populations of species T using a panel of microsatellite markers. Analyses indicated a significant but low genetic differentiation among the majority of the studied populations. A significant correlation was observed between genetic and geographic distances, exhibiting stepwise migration patterns among populations.


Subject(s)
Anopheles , Malaria , Animals , Anopheles/genetics , Genetic Structures , Genetics, Population , India/epidemiology , Malaria/veterinary , Mosquito Vectors/genetics
6.
PLoS Negl Trop Dis ; 15(8): e0009652, 2021 08.
Article in English | MEDLINE | ID: mdl-34370745

ABSTRACT

Plasmodium vivax, a major contributor to the malaria burden in India, has the broadest geographic distribution and shows higher genetic diversity than P. falciparum. Here, we investigated the genetic diversity of two leading P. vivax vaccine candidate antigens, at three geographically diverse malaria-endemic regions in India. Pvama1 and Pvmsp119 partial coding sequences were generated from one hundred P. vivax isolates in India (Chennai n = 28, Nadiad n = 50 and Rourkela n = 22) and ~1100 published sequences from Asia, South America, North America, and Oceania regions included. These data were used to assess the genetic diversity and potential for vaccine candidacy of both antigens on a global scale. A total of 44 single nucleotide polymorphism (SNPs) were identified among 100 Indian Pvama1 sequences, including 10 synonymous and 34 nonsynonymous mutations. Nucleotide diversity was higher in Rourkela and Nadiad as compared to Chennai. Nucleotide diversity measures showed a strong balancing selection in Indian and global population for domain I of Pvama1, which suggests that it is a dominant target of the protective immune response. In contrast, the Pvmsp119 region showed highly conserved sequences in India and across the Oceania, South America, North America and Asia, demonstrating low genetic diversity in the global population when compared to Pvama1. Results suggest the possibility of including Pvmsp119 in a multivalent vaccine formulation against P. vivax infections. However, the high genetic diversity seen in Pvama1 would be more challenging for vaccine development.


Subject(s)
Antigens, Protozoan/genetics , Genetic Variation , Malaria, Vivax/parasitology , Plasmodium vivax/genetics , Protozoan Proteins/genetics , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Humans , India , Mutation , Plasmodium vivax/isolation & purification , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Vaccines
7.
Malar J ; 18(1): 425, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31842894

ABSTRACT

BACKGROUND: Identifying highly immunogenic blood stage antigens which can work as target for naturally acquired antibodies in different eco-epidemiological settings is an important step for designing malaria vaccine. Blood stage proteins of Plasmodium vivax, apical membrane antigen-1 (PvAMA-1) and 19 kDa fragment of merozoite surface protein (PvMSP-119) are such promising vaccine candidate antigens. This study determined the naturally-acquired antibody response to PvAMA-1 and PvMSP-119 antigens in individuals living in three geographically diverse malaria endemic regions of India. METHODS: A total of 234 blood samples were collected from individuals living in three different eco-epidemiological settings, Chennai, Nadiad, and Rourkela of India. Indirect ELISA was performed to measure human IgG antibodies against recombinant PvAMA-1 and PvMSP-119 antigens. The difference in seroprevalence and factors associated with antibody responses at each site was statistically analysed. RESULTS: The overall seroprevalence was 40.6% for PvAMA-1 and 62.4% for PvMSP-119. Seroprevalence to PvAMA-1 was higher in Chennai (47%) followed by Nadiad (46.7%) and Rourkela (27.6%). For PvMSP-119, seroprevalence was higher in Chennai (80.3%) as compared to Nadiad (53.3%) and Rourkela (57.9%). Seroprevalence for both the antigens were found to be higher in Chennai where P. vivax is the dominant malaria species. In addition, heterogeneous antibody response was observed for PvAMA-1 and PvMSP-119 antigens at each of the study sites. Two factors, age and malaria positivity were significantly associated with seropositivity for both the antigens PvAMA-1 and PvMSP-119. CONCLUSION: These data suggest that natural acquired antibody response is higher for PvMSP-119 antigen as compared to PvAMA-1 antigen in individuals living in three geographically diverse malaria endemic regions in India. PvMSP-119 appears to be highly immunogenic in Indian population and has great potential as a malaria vaccine candidate. The differences in immune response against vaccine candidate antigens in different endemic settings should be taken into account for development of asexual stage based P. vivax malaria vaccine, which in turn can enhance malaria control efforts.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Malaria, Vivax/immunology , Membrane Proteins/immunology , Merozoite Surface Protein 1/immunology , Protozoan Proteins/immunology , Adolescent , Adult , Antibody Formation , Antigens, Protozoan/blood , Child , Endemic Diseases , Enzyme-Linked Immunosorbent Assay , Female , Geography , Humans , Immunoglobulin G/blood , India , Malaria, Vivax/prevention & control , Male , Membrane Proteins/blood , Merozoite Surface Protein 1/blood , Middle Aged , Plasmodium vivax , Protozoan Proteins/blood , Seroepidemiologic Studies , Young Adult
8.
Sci Rep ; 9(1): 17095, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31745160

ABSTRACT

Malaria in India, while decreasing, remains a serious public health problem, and the contribution of submicroscopic and asymptomatic infections to its persistence is poorly understood. We conducted community surveys and clinic studies at three sites in India differing in their eco-epidemiologies: Chennai (Tamil Nadu), Nadiad (Gujarat), and Rourkela (Odisha), during 2012-2015. A total of 6,645 subject blood samples were collected for Plasmodium diagnosis by microscopy and PCR, and an extensive clinical questionnaire completed. Malaria prevalence ranged from 3-8% by PCR in community surveys (24 infections in Chennai, 56 in Nadiad, 101 in Rourkela), with Plasmodium vivax dominating in Chennai (70.8%) and Nadiad (67.9%), and Plasmodium falciparum in Rourkela (77.3%). A proportional high burden of asymptomatic and submicroscopic infections was detected in community surveys in Chennai (71% and 71%, respectively, 17 infections for both) and Rourkela (64% and 31%, 65 and 31 infections, respectively). In clinic studies, a proportional high burden of infections was identified as submicroscopic in Rourkela (45%, 42 infections) and Chennai (19%, 42 infections). In the community surveys, anemia and fever were significantly more common among microscopic than submicroscopic infections. Exploratory spatial analysis identified a number of potential malaria hotspots at all three sites. There is a considerable burden of submicroscopic and asymptomatic malaria in malarious regions in India, which may act as a reservoir with implications for malaria elimination strategies.


Subject(s)
Malaria/epidemiology , Malaria/transmission , Microscopy/methods , Plasmodium/pathogenicity , Adolescent , Adult , Aged , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , India/epidemiology , Infant , Malaria/parasitology , Male , Middle Aged , Plasmodium/classification , Prevalence , Young Adult
9.
J Clin Microbiol ; 54(6): 1500-1511, 2016 06.
Article in English | MEDLINE | ID: mdl-27008882

ABSTRACT

A major challenge to global malaria control and elimination is early detection and containment of emerging drug resistance. Next-generation sequencing (NGS) methods provide the resolution, scalability, and sensitivity required for high-throughput surveillance of molecular markers of drug resistance. We have developed an amplicon sequencing method on the Ion Torrent PGM platform for targeted resequencing of a panel of six Plasmodium falciparum genes implicated in resistance to first-line antimalarial therapy, including artemisinin combination therapy, chloroquine, and sulfadoxine-pyrimethamine. The protocol was optimized using 12 geographically diverse P. falciparum reference strains and successfully applied to multiplexed sequencing of 16 clinical isolates from India. The sequencing results from the reference strains showed 100% concordance with previously reported drug resistance-associated mutations. Single-nucleotide polymorphisms (SNPs) in clinical isolates revealed a number of known resistance-associated mutations and other nonsynonymous mutations that have not been implicated in drug resistance. SNP positions containing multiple allelic variants were used to identify three clinical samples containing mixed genotypes indicative of multiclonal infections. The amplicon sequencing protocol has been designed for the benchtop Ion Torrent PGM platform and can be operated with minimal bioinformatics infrastructure, making it ideal for use in countries that are endemic for the disease to facilitate routine large-scale surveillance of the emergence of drug resistance and to ensure continued success of the malaria treatment policy.


Subject(s)
Antimalarials/pharmacology , Drug Resistance , Genotyping Techniques/methods , High-Throughput Nucleotide Sequencing/methods , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Alleles , Computational Biology/methods , Humans , India , Plasmodium falciparum/isolation & purification , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods
10.
Parasit Vectors ; 8: 471, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26381498

ABSTRACT

BACKGROUND: Sulfadoxine-pyrimethamine (SP) combination drug is currently being used in India for the treatment of Plasmodium falciparum as partner drug in artemisinin-based combination therapy (ACT). Resistance to sulfadoxine and pyrimethamine in P. falciparum is linked with mutations in dihydropteroate synthase (pfdhps) and dihydrofolate reductase (pfdhfr) genes respectively. This study was undertaken to estimate the prevalence of such mutations in pfdhfr and pfdhps genes in four states of India. METHODS: Plasmodium falciparum isolates were collected from two states of India with high malaria incidence i.e., Jharkhand and Odisha and two states with low malaria incidence i.e., Andhra Pradesh and Uttar Pradesh between years 2006 to 2012. Part of sulfadoxine-pyrimethamine (SP) drug resistance genes, pfdhfr and pfdhps were PCR-amplified, sequenced and analyzed. RESULTS: A total of 217 confirmed P. falciparum isolates were sequenced for both Pfdhfr and pfdhps gene. Two pfdhfr mutations 59R and 108N were most common mutations prevalent in all localities in 77 % of isolates. Additionally, I164L was found in Odisha and Jharkhand only (4/70 and 8/84, respectively). Another mutation 51I was found in Odisha only (3/70). The pfdhps mutations 436A, 437G, 540E and 581G were found in Jharkhand and Odisha only in 13, 26, 14 and 13 % isolates respectively, and was absent in Uttar Pradesh and Andhra Pradesh. Combined together for pfdhps and pfdhfr locus, triple, quadruple, quintuple and sextuple mutations were present in Jharkhand and Odisha while absent in Uttar Pradesh and Andhra Pradesh. CONCLUSION: While only double mutants of pfdhfr was present in low transmission area (Uttar Pradesh and Andhra Pradesh) with total absence of pfdhps mutants, up to sextuple mutations were present in high transmission areas (Odisha and Jharkhand) for both the genes combined. Presence of multiple mutations in pfdhfr and pfdhps genes linked to SP resistance in high transmission area may lead to fixation of multiple mutations in presence of high drug pressure and high recombination rate.


Subject(s)
Dihydropteroate Synthase/genetics , Drug Resistance , Mutation, Missense , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Polymorphism, Genetic , Tetrahydrofolate Dehydrogenase/genetics , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , India , Malaria, Falciparum/parasitology , Molecular Sequence Data , Plasmodium falciparum/isolation & purification , Polymerase Chain Reaction , Sequence Analysis, DNA
11.
Infect Genet Evol ; 20: 407-12, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24126360

ABSTRACT

The positive selection of a nucleotide substitution in exon 2 of Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene (mutation responsible for chloroquine resistance) causes a reduction in variation of neutral loci close to the gene. This reduction in allelic diversity around flanking regions of pfcrt gene was reported in worldwide chloroquine resistant isolates and referred as selective sweep. In Plasmodium falciparum isolates of India, the selective sweep in flanking loci of pfcrt gene is well established, however, high allelic diversity observed in intragenic microsatellites of pfcrt gene implied an ongoing genetic recombination. To understand, if molecular evolution of chloroquine-resistant P. falciparum isolates in India follow a selective sweep model, we analyzed genetic diversity at both seven intragenic and seven flanking microsatellites of pfcrt (-24 to +106kb) gene in chloroquine sensitive and resistant parasites originating from high and low transmission areas. We observed low expected heterozygosity at all loci of resistant pfcrt-haplotypes (He=0-0.77) compared to the wild-type (He=0.38-0.96). Resistant SVMNT from high transmission areas showed significantly higher mean He (P=0.03, t-test) at both intragenic and pfcrt-flanking loci (-24 to +22 kb) in comparison to low transmission areas. Our observation of reduction in variation at both intragenic and flanking loci of mutant pfcrt gene confirmed the selective sweep model of natural selection in chloroquine resistant P. falciparum isolates in India.


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Drug Resistance/genetics , Malaria, Falciparum/drug therapy , Membrane Transport Proteins/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Selection, Genetic , DNA, Protozoan/genetics , Evolution, Molecular , Genetic Variation , Haplotypes/genetics , Humans , India , Linkage Disequilibrium/genetics , Malaria, Falciparum/parasitology , Microsatellite Repeats/genetics , Plasmodium falciparum/isolation & purification
12.
Infect Genet Evol ; 19: 164-75, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23871774

ABSTRACT

Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite's acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST=0.253, P<0.001) suggests a long period of isolation or a possibility of different origin between them. A pattern of significant isolation by distance was observed in low transmission areas (r=0.49, P=0.003, N=83, Mantel test). An unanticipated pattern of spread of hitchhiking suggests genetic structure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation at both neutral and adaptive loci across India.


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Malaria, Falciparum/parasitology , Microsatellite Repeats/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Alleles , DNA, Protozoan/analysis , DNA, Protozoan/genetics , Drug Resistance/genetics , Genes, Protozoan/genetics , Haplotypes , Humans , India/epidemiology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Phylogeography , Plasmodium falciparum/isolation & purification
13.
Malar J ; 11: 16, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22236376

ABSTRACT

BACKGROUND: Chloroquine resistance (CQR) phenotype in Plasmodium falciparum is associated with mutations in pfcrt and pfmdr-1 genes. Mutations at amino acid position 72-76 of pfcrt gene, here defined as pfcrt haplotype are associated with the geographic origin of chloroquine resistant parasite. Here, mutations at 72-76 and codon 220 of pfcrt gene and N86Y pfmdr-1 mutation were studied in blood samples collected across 11 field sites, inclusive of high and low P. falciparum prevalent areas in India. Any probable correlation between these mutations and clinical outcome of CQ treatment was also investigated. METHODS: Finger pricked blood spotted on Whatman No.3 papers were collected from falciparum malaria patients of high and low P. falciparum prevalent areas. For pfcrt haplotype investigation, the parasite DNA was extracted from blood samples and used for PCR amplification, followed by partial sequencing of the pfcrt gene. For pfmdr-1 N86Y mutation, the PCR product was subjected to restriction digestion with AflIII endonuclease enzyme. RESULTS: In 240 P. falciparum isolates with reported in vivo CQ therapeutic efficacy, the analysis of mutations in pfcrt gene shows that mutant SVMNT-S (67.50%) and CVIET-S (23.75%) occurred irrespective of clinical outcome and wild type CVMNK-A (7.91%) occurred only in adequate clinical and parasitological response samples. Of 287 P. falciparum isolates, SVMNTS 192 (66.89%) prevailed in all study sites and showed almost monomorphic existence (98.42% isolates) in low P. falciparum prevalent areas. However, CVIETS-S (19.51%) and CVMNK-A (11.84%) occurrence was limited to high P. falciparum prevalent areas. Investigation of pfmdr-1 N86Y mutation shows no correlation with clinical outcomes. The wild type N86 was prevalent in all the low P. falciparum prevalent areas (94.48%). However, mutant N86Y was comparably higher in numbers at the high P. falciparum prevalent areas (42.76%). CONCLUSIONS: The wild type pfcrt gene is linked to chloroquine sensitivity; however, presence of mutation cannot explain the therapeutic efficacy of CQ in the current scenario of chloroquine resistance. The monomorphic existence of mutant SVMNT haplotype, infer inbreeding and faster spread of CQR parasite in areas with higher P. vivax prevalance and chloroquine exposure, whereas, diversity is maintained in pfcrt gene at high P. falciparum prevalent areas.


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Drug Resistance , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Plasmodium vivax/genetics , Protozoan Proteins/genetics , Amino Acid Substitution , Blood/parasitology , DNA, Protozoan/genetics , DNA, Protozoan/isolation & purification , Haplotypes , Humans , India , Mutation, Missense , Plasmodium vivax/classification , Plasmodium vivax/isolation & purification , Polymerase Chain Reaction , Sequence Analysis, DNA
14.
Malar J ; 7: 13, 2008 Jan 14.
Article in English | MEDLINE | ID: mdl-18194515

ABSTRACT

BACKGROUND: Susceptibility/resistance to Plasmodium falciparum malaria has been correlated with polymorphisms in more than 30 human genes with most association analyses having been carried out on patients from Africa and south-east Asia. The aim of this study was to examine the possible contribution of genetic variants in the TNF and FCGR2A genes in determining severity/resistance to P. falciparum malaria in Indian subjects. METHODS: Allelic frequency distribution in populations across India was first determined by typing genetic variants of the TNF enhancer and the FCGR2A G/A SNP in 1871 individuals from 55 populations. Genotyping was carried out by DNA sequencing, single base extension (SNaPshot), and DNA mass array (Sequenom). Plasma TNF was determined by ELISA. Comparison of datasets was carried out by Kruskal-Wallis and Mann-Whitney tests. Haplotypes and LD plots were generated by PHASE and Haploview, respectively. Odds ratio (OR) for risk assessment was calculated using EpiInfotrade mark version 3.4. RESULTS: A novel single nucleotide polymorphism (SNP) at position -76 was identified in the TNF enhancer along with other reported variants. Five TNF enhancer SNPs and the FCGR2A R131H (G/A) SNP were analyzed for association with severity of P. falciparum malaria in a malaria-endemic and a non-endemic region of India in a case-control study with ethnically-matched controls enrolled from both regions. TNF -1031C and -863A alleles as well as homozygotes for the TNF enhancer haplotype CACGG (-1031T>C, -863C>A, -857C>T, -308G>A, -238G>A) correlated with enhanced plasma TNF levels in both patients and controls. Significantly higher TNF levels were observed in patients with severe malaria. Minor alleles of -1031 and -863 SNPs were associated with increased susceptibility to severe malaria. The high-affinity IgG2 binding FcgammaRIIa AA (131H) genotype was significantly associated with protection from disease manifestation, with stronger association observed in the malaria non-endemic region. These results represent the first genetic analysis of the two immune regulatory molecules in the context of P. falciparum severity/resistance in the Indian population. CONCLUSION: Association of specific TNF and FCGR2A SNPs with cytokine levels and disease severity/resistance was indicated in patients from areas with differential disease endemicity. The data emphasizes the need for addressing the contribution of human genetic factors in malaria in the context of disease epidemiology and population genetic substructure within India.


Subject(s)
Antigens, CD/genetics , Genetic Predisposition to Disease , Malaria, Falciparum/genetics , Polymorphism, Single Nucleotide , Receptors, IgG/genetics , Tumor Necrosis Factor-alpha/genetics , Africa/ethnology , Asia, Southeastern/ethnology , Enzyme-Linked Immunosorbent Assay , Gene Frequency , Genotype , Haplotypes , Humans , India/epidemiology , Malaria, Falciparum/ethnology , Malaria, Falciparum/pathology , Odds Ratio , Severity of Illness Index , Tumor Necrosis Factor-alpha/blood
15.
Malar J ; 6: 60, 2007 May 21.
Article in English | MEDLINE | ID: mdl-17517129

ABSTRACT

BACKGROUND: Molecular techniques have facilitated the studies on genetic diversity of Plasmodium species particularly from field isolates collected directly from patients. The msp-1 and msp-2 are highly polymorphic markers and the large allelic polymorphism has been reported in the block 2 of the msp-1 gene and the central repetitive domain (block3) of the msp-2 gene. Families differing in nucleotide sequences and in number of repetitive sequences (length variation) were used for genotyping purposes. As limited reports are available on the genetic diversity existing among Plasmodium falciparum population of India, this report evaluates the extent of genetic diversity in the field isolates of P. falciparum in eastern and north-eastern regions of India. METHODS: A study was designed to assess the diversity of msp-1 and msp-2 among the field isolates from India using allele specific nested PCR assays and sequence analysis. Field isolates were collected from five sites distributed in three states namely, Assam, West Bengal and Orissa. RESULTS: P. falciparum isolates of the study sites are highly diverse in respect of length as well as sequence motifs with prevalence of all the reported allelic families of msp-1 and msp-2. Prevalence of identical allelic composition as well as high level of sequence identity of alleles suggest a considerable amount of gene flow between the P. falciparum populations of different states. A comparatively higher proportion of multiclonal isolates as well as multiplicity of infection (MOI) was observed among isolates of highly malarious districts Karbi Anglong (Assam) and Sundergarh (Orissa). In all the five sites, R033 family of msp-1 was observed to be monomorphic with an allele size of 150/160 bp. The observed 80-90% sequence identity of Indian isolates with data of other regions suggests that Indian P. falciparum population is a mixture of different strains. CONCLUSION: The present study shows that the field isolates of eastern and north-eastern regions of India are highly diverse in respect of msp-1 (block 2) and msp-2 (central repeat region, block 3). As expected Indian isolates present a picture of diversity closer to southeast Asia, Papua New Guinea and Latin American countries, regions with low to meso-endemicity of malaria in comparison to African regions of hyper- to holo-endemicity.


Subject(s)
Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Amino Acid Sequence , Animals , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Genetic Variation , Genotype , Humans , India/epidemiology , Malaria, Falciparum/epidemiology , Merozoite Surface Protein 1/chemistry , Merozoite Surface Protein 1/genetics , Molecular Sequence Data , Protozoan Proteins/chemistry , Protozoan Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...