Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(13): e33672, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040266

ABSTRACT

Intracellular membrane tubules play a crucial role in diverse cellular processes, and their regulation is facilitated by Bin-Amphiphysin-Rvs (BAR) domain-containing proteins. This study investigates the roles of Drosophila ICA69 (dICA69) (an N-BAR protein) and Drosophila CIP4 (dCIP4) (an F-BAR protein), focusing on their impact on in vivo membrane tubule organization. In contrast to the prevailing models of BAR-domain protein function, we observed colocalization of endogenous dICA69 with dCIP4-induced tubules, indicating their potential recruitment for tubule formation and maintenance. Moreover, actin-regulatory proteins such as Wasp, SCAR, and Arp2/3 were recruited at the site of CIP4-induced tubule formation. An earlier study indicated that F-BAR proteins spontaneously segregate from the N-BAR domain proteins during membrane tubule formation. In contrast, our observation supports a model in which different BAR-domain family members can associate with the same tubule and cooperate to fine-tune the tubule width, possibly by recruiting actin modulators during the generation of tubules. Our data suggests that cooperative activities of distinct BAR-domain family proteins may determine the length and width of the membrane tubule in vivo.

2.
FEBS Lett ; 598(12): 1491-1505, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38862211

ABSTRACT

Membrane protrusions are fundamental to cellular functions like migration, adhesion, and communication and depend upon dynamic reorganization of the cytoskeleton. GAP-dependent GTP hydrolysis of Arf proteins regulates actin-dependent membrane remodeling. Here, we show that dAsap regulates membrane protrusions in S2R+ cells by a mechanism that critically relies on its ArfGAP domain and relocalization of actin regulators, SCAR, and Ena. While our data reinforce the preference of dAsap for Arf1 GTP hydrolysis in vitro, we demonstrate that induction of membrane protrusions in S2R+ cells depends on Arf6 inactivation. This study furthers our understanding of how dAsap-dependent GTP hydrolysis maintains a balance between active and inactive states of Arf6 to regulate cell shape.


Subject(s)
ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors , Actins , GTPase-Activating Proteins , Animals , ADP-Ribosylation Factors/metabolism , ADP-Ribosylation Factors/genetics , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Actins/metabolism , Mice , Cell Surface Extensions/metabolism , Humans , Cell Line , Guanosine Triphosphate/metabolism , Hydrolysis
SELECTION OF CITATIONS
SEARCH DETAIL