Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 34(8): 2619-2629, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29381069

ABSTRACT

Despite the success of plasma-enhanced atomic layer deposition (PEALD) in depositing quality silicon nitride films, a fundamental understanding of the growth mechanism has been difficult to obtain because of lack of in situ characterization to probe the surface reactions noninvasively and the complexity of reactions induced/enhanced by the plasma. These challenges have hindered the direct observation of intermediate species formed during the reactions. We address this challenge by examining the interaction of Ar plasma using atomically flat, monohydride-terminated Si(111) as a well-defined model surface and focusing on the initial PEALD with aminosilanes. In situ infrared and X-ray photoelectron spectroscopy reveals that an Ar plasma induces desorption of H atoms from H-Si(111) surfaces, leaving Si dangling bonds, and that the reaction of di-sec-butylaminosilane (DSBAS) with Ar plasma-treated surfaces requires the presence of both active sites (Si dangling bonds) and Si-H; there is no reaction on fully H-terminated or activated surfaces. By contrast, high-quality hydrofluoric acid-etched Si3N4 surfaces readily react with DSBAS, resulting in the formation of O-SiH3. However, the presence of back-bonded oxygen in O-SiH3 inhibits H desorption by Ar or N2 plasma, presumably because of stabilization of H against ion-induced desorption. Consequently, there is no reaction of adsorbed aminosilanes even after extensive Ar or N2 plasma treatments; a thermal process is necessary to partially remove H, thereby promoting the formation of active sites. These observations are consistent with a mechanism requiring the presence of both undercoordinated nitrogen and/or dangling bonds and unreacted surface hydrogen. Because active sites are involved, the PEALD process is found to be sensitive to the duration of the plasma exposure treatment and the purge time, during which passivation of these sites can occur.

2.
ACS Appl Mater Interfaces ; 9(2): 1858-1869, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28059494

ABSTRACT

The advent of three-dimensional (3D) finFET transistors and emergence of novel memory technologies place stringent requirements on the processing of silicon nitride (SiNx) films used for a variety of applications in device manufacturing. In many cases, a low temperature (<400 °C) deposition process is desired that yields high quality SiNx films that are etch resistant and also conformal when grown on 3D substrate topographies. In this work, we developed a novel plasma-enhanced atomic layer deposition (PEALD) process for SiNx using a mono-aminosilane precursor, di(sec-butylamino)silane (DSBAS, SiH3N(sBu)2), and N2 plasma. Material properties have been analyzed over a wide stage temperature range (100-500 °C) and compared with those obtained in our previous work for SiNx deposited using a bis-aminosilane precursor, bis(tert-butylamino)silane (BTBAS, SiH2(NHtBu)2), and N2 plasma. Dense films (∼3.1 g/cm3) with low C, O, and H contents at low substrate temperatures (<400 °C) were obtained on planar substrates for this process when compared to other processes reported in the literature. The developed process was also used for depositing SiNx films on high aspect ratio (4.5:1) 3D trench nanostructures to investigate film conformality and wet-etch resistance (in dilute hydrofluoric acid, HF/H2O = 1:100) relevant for state-of-the-art device architectures. Film conformality was below the desired levels of >95% and attributed to the combined role played by nitrogen plasma soft saturation, radical species recombination, and ion directionality during SiNx deposition on 3D substrates. Yet, very low wet-etch rates (WER ≤ 2 nm/min) were observed at the top, sidewall, and bottom trench regions of the most conformal film deposited at low substrate temperature (<400 °C), which confirmed that the process is applicable for depositing high quality SiNx films on both planar and 3D substrate topographies.

SELECTION OF CITATIONS
SEARCH DETAIL
...