Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Nanoscale ; 15(22): 9663-9674, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37211815

ABSTRACT

Reservoir computing (RC) has attracted significant interest as a framework for the implementation of novel neuromorphic computing architectures. Previously attention has been focussed on software-based reservoirs, where it has been demonstrated that reservoir topology plays a role in task performance, and functional advantage has been attributed to small-world and scale-free connectivity. However in hardware systems, such as electronic memristor networks, the mechanisms responsible for the reservoir dynamics are very different and the role of reservoir topology is largely unknown. Here we compare the performance of a range of memristive reservoirs in several RC tasks that are chosen to highlight different system requirements. We focus on percolating networks of nanoparticles (PNNs) which are novel self-assembled nanoscale systems that exhibit scale-free and small-world properties. We find that the performance of regular arrays of uniform memristive elements is limited by their symmetry but that this symmetry can be broken either by a heterogeneous distribution of memristor properties or a scale-free topology. The best perfomance across all tasks is observed for a scale-free network with uniform memistor properties. These results provide insight into the role of topology in neuromorphic reservoirs as well as an overview of the computational performance of scale-free networks of memristors in a range of benchmark tasks.

2.
Neural Netw ; 154: 122-130, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35882080

ABSTRACT

Networks of nanowires are currently being explored for a range of applications in brain-like (or neuromorphic) computing, and especially in reservoir computing (RC). Fabrication of real-world computing devices requires that the nanowires are deposited sequentially, leading to stacking of the wires on top of each other. However, most simulations of computational tasks using these systems treat the nanowires as 1D objects lying in a perfectly 2D plane - the effect of stacking on RC performance has not yet been established. Here we use detailed simulations to compare the performance of perfectly 2D and quasi-3D (stacked) networks of nanowires in two tasks: memory capacity and nonlinear transformation. We also show that our model of the junctions between nanowires is general enough to describe a wide range of memristive networks, and consider the impact of physically realistic electrode configurations on performance. We show that the various networks and configurations have a strikingly similar performance in RC tasks, which is surprising given their radically different topologies. Our results show that networks with an experimentally achievable number of electrodes perform close to the upper bounds achievable when using the information from every wire. However, we also show important differences, in particular that the quasi-3D networks are more resilient to changes in the input parameters, generalizing better to noisy training data. Since previous literature suggests that topology plays an important role in computing performance, these results may have important implications for future applications of nanowire networks in neuromorphic computing.


Subject(s)
Nanowires , Brain , Electrodes , Neural Networks, Computer
3.
Sci Adv ; 5(11): eaaw8438, 2019 11.
Article in English | MEDLINE | ID: mdl-31700999

ABSTRACT

Current efforts to achieve neuromorphic computation are focused on highly organized architectures, such as integrated circuits and regular arrays of memristors, which lack the complex interconnectivity of the brain and so are unable to exhibit brain-like dynamics. New architectures are required, both to emulate the complexity of the brain and to achieve critical dynamics and consequent maximal computational performance. We show here that electrical signals from self-organized networks of nanoparticles exhibit brain-like spatiotemporal correlations and criticality when fabricated at a percolating phase transition. Specifically, the sizes and durations of avalanches of switching events are power law distributed, and the power law exponents satisfy rigorous criteria for criticality. These signals are therefore qualitatively and quantitatively similar to those measured in the cortex. Our self-organized networks provide a low-cost platform for computational approaches that rely on spatiotemporal correlations, such as reservoir computing, and are an important step toward creating neuromorphic device architectures.

4.
Faraday Discuss ; 213(0): 471-485, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30357187

ABSTRACT

We report a detailed study of neuromorphic switching behaviour in inherently complex percolating networks of self-assembled metal nanoparticles. We show that variation of the strength and duration of the electric field applied to this network of synapse-like atomic switches allows us to control the switching dynamics. Switching is observed for voltages above a well-defined threshold, with higher voltages leading to increased switching rates. We demonstrate two behavioral archetypes and show how the switching dynamics change as a function of duration and amplitude of the voltage stimulus. We show that the state of each synapse can influence the activity of the other synapses, leading to complex switching dynamics. We further demonstrate the influence of the morphology of the network on the measured device properties, and the constraints imposed by the overall network conductance. The correlated switching dynamics, device stability over long periods, and the simplicity of the device fabrication provide an attractive pathway to practical implementation of on-chip neuromorphic computing.

SELECTION OF CITATIONS
SEARCH DETAIL
...