Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
J Am Soc Nephrol ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133556

ABSTRACT

BACKGROUND: Podocyte loss is the major driver of primary glomerular diseases such as Focal Segmental Glomerulosclerosis. While systemic glucocorticoids remain the initial and primary therapy for these diseases, high-dose and chronic use of glucocorticoids is riddled with systemic toxicities. Krüppel-Like Factor 15 (KLF15) is a glucocorticoid-responsive gene, which is essential for the restoration of mature podocyte differentiation markers and stabilization of actin cytoskeleton in the setting of cell stress. Induction of KLF15 attenuates podocyte injury and glomerulosclerosis in the setting of cell stress. METHODS: A cell-based high-throughput screen with a subsequent structure-activity relationship study was conducted to identify novel agonists of KLF15 in human podocytes. Next, the agonist was tested in cultured human podocytes under cell stress and in three independent proteinuric models (lipopolysaccharide, nephrotoxic serum nephritis, HIV-1 transgenic mice). A combination of RNA-sequencing and molecular modeling with experimental validation was conducted to demonstrate the direct target of the agonist. RESULTS: The high-throughput screen with structure-activity relationship study identified BT503, a urea-based compound, as a novel agonist of KLF15, independent of glucocorticoid signaling. BT503 demonstrated protective effects in cultured human podocytes and in three independent proteinuric murine models. Subsequent molecular modeling with experimental validation shows that BT503, targets the IKK complex by directly binding to IKKß to inhibit canonical NF-κB signaling, which, in turn, restores KLF15 under cell stress, thereby rescuing podocyte loss and ameliorating kidney injury. CONCLUSIONS: By developing and validating a cell-based high-throughput screen in human podocytes, we identified a novel agonist for KLF15 with salutary effects in proteinuric murine models through direct inhibition of IKKß kinase activity.

2.
Am J Physiol Renal Physiol ; 326(3): F313-F325, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38205544

ABSTRACT

Podocytes are highly specialized epithelial cells that surround the capillaries of the glomeruli in the kidney. Together with the glomerular endothelial cells, these postmitotic cells are responsible for regulating filtrate from the circulating blood with their organized network of interdigitating foot processes that wrap around the glomerular basement membrane. Although podocyte injury and subsequent loss is the hallmark of many glomerular diseases, recent evidence suggests that the cell-cell communication between podocytes and other glomerular and nonglomerular cells is critical for the development and progression of kidney disease. In this review, we highlight these key cellular pathways of communication and how they might be a potential target for therapy in glomerular disease. We also postulate that podocytes might serve as a central hub for communication in the kidney under basal conditions and in response to cellular stress, which may have implications for the development and progression of glomerular diseases.


Subject(s)
Kidney Diseases , Podocytes , Humans , Podocytes/metabolism , Endothelial Cells , Kidney Diseases/metabolism , Kidney , Glomerular Basement Membrane/metabolism
3.
Blood Purif ; 53(1): 30-39, 2024.
Article in English | MEDLINE | ID: mdl-37918364

ABSTRACT

INTRODUCTION: Endotoxin is a key driver of sepsis, which frequently causes acute kidney injury (AKI). However, endotoxins may also be found in non-bacteremic critically ill patients, likely from intestinal translocation. Preclinical models show that endotoxins can directly injure the kidneys, and in COVID-19 patients, endotoxemia correlated with AKI. We sought to determine correlations between endotoxemia and kidney and hospital outcomes in a broad group of critically ill patients. METHODS: In this single-center, serial prospective study, 124 predominantly Caucasian adult patients were recruited within 48 h of admission to Stony Brook University Hospital Intensive Care Unit (ICU). Demographics, vital signs, laboratory data, and outcomes were collected. Circulating endotoxin was measured on days 1, 4, and 8 using the endotoxin activity assay (EAA). The association of EAA with outcomes was examined with EAA: (1) categorized as <0.6, ≥0.6, and nonresponders (NRs); and (2) used as a continuous variable. RESULTS: Patients with EAA ≥0.6 had a higher prevalence of proteinuria, and lower arterial oxygen saturation (SaO2) to fraction of inspired oxygen (FiO2) (SaO2/FiO2) ratio versus patients with EAA <0.6. EAA levels positively correlated with serum creatinine (sCr) levels on day 1. Patients whose EAA level stayed ≥0.6 had a slower decline in sCr compared to those whose EAA started at ≥0.6 and subsequently declined. Patients with AKI stage 1 and EAA ≥0.6 on day 1 showed slower decline in sCr compared to patients with stage 1 AKI and EAA <0.6. EAA ≥0.6 and NR patients had longer hospital stay and delayed ICU discharge versus EAA <0.6. CONCLUSIONS: High EAA levels correlated with worse kidney function and outcomes. Patients whose EAA levels fell, and those with AKI stage I and day 1 EAA <0.6 recovered more quickly compared to those with EAA ≥0.6, suggesting that removal of circulating endotoxins may be beneficial in critically ill patients.


Subject(s)
Acute Kidney Injury , Endotoxemia , Adult , Humans , Endotoxemia/complications , Endotoxemia/therapy , Prospective Studies , Length of Stay , Critical Illness/epidemiology , Endotoxins , Intensive Care Units , Acute Kidney Injury/epidemiology , Kidney , Oxygen
4.
J Clin Invest ; 133(24)2023 12 15.
Article in English | MEDLINE | ID: mdl-38099501

ABSTRACT

Profilin1 belongs to a family of small monomeric actin-binding proteins with diverse roles in fundamental actin-dependent cellular processes required for cell survival. Podocytes are postmitotic visceral epithelial cells critical for the structure and function of the kidney filtration barrier. There is emerging evidence that the actin-related mode of cell death known as mitotic catastrophe is an important pathway involved in podocyte loss. In this issue of the JCI, Tian, Pedigo, and colleagues demonstrate that profilin1 deficiency in podocytes triggered cell cycle reentry, resulting in abortive cytokinesis with a loss in ribosomal RNA processing that leads to podocyte loss and glomerulosclerosis. This study demonstrates the essential role of actin dynamics in mediating this fundamental mode of podocyte cell death.


Subject(s)
Kidney Diseases , Podocytes , Humans , Podocytes/metabolism , Actins/metabolism , Kidney Diseases/metabolism , Cell Cycle , Cell Death
5.
Front Nephrol ; 3: 1266967, 2023.
Article in English | MEDLINE | ID: mdl-37965069

ABSTRACT

The COVID-19 pandemic resulted in an unprecedented burden on intensive care units (ICUs). With increased demands and limited supply, critical care resources, including dialysis machines, became scarce, leading to the undertaking of value-based cost-effectiveness analyses and the rationing of resources to deliver patient care of the highest quality. A high proportion of COVID-19 patients admitted to the ICU required dialysis, resulting in a major burden on resources such as dialysis machines, nursing staff, technicians, and consumables such as dialysis filters and solutions and anticoagulation medications. Artificial intelligence (AI)-based big data analytics are now being utilized in multiple data-driven healthcare services, including the optimization of healthcare system utilization. Numerous factors can impact dialysis resource allocation to critically ill patients, especially during public health emergencies, but currently, resource allocation is determined using a small number of traditional factors. Smart analytics that take into account all the relevant healthcare information in the hospital system and patient outcomes can lead to improved resource allocation, cost-effectiveness, and quality of care. In this review, we discuss dialysis resource utilization in critical care, the impact of the COVID-19 pandemic, and how AI can improve resource utilization in future public health emergencies. Research in this area should be an important priority.

6.
Biosensors (Basel) ; 13(9)2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37754086

ABSTRACT

High-multiplex detection of protein biomarkers across tissue regions has been an attractive spatial biology approach due to significant advantages over traditional immunohistochemistry (IHC) methods. Different from most methods, spatial multiplex in situ tagging (MIST) transfers the spatial protein expression information to an ultrahigh-density, large-scale MIST array. This technique has been optimized to reach single-cell resolution by adoption of smaller array units and 30% 8-arm PEG polymer as transfer medium. Tissue cell nuclei stained with lamin B have been clearly visualized on the MIST arrays and are colocalized with detection of nine mouse brain markers. Pseudocells defined at 10 µm in size have been used to fully profile tissue regions including cells and the intercellular space. We showcased the versatility of our technology by successfully detecting 20 marker proteins in kidney samples with the addition of five minutes atop the duration of standard immunohistochemistry protocols. Spatial MIST is amenable to iterative staining and detection on the same tissue samples. When 25 proteins were co-detected on 1 mouse brain section for each round and 5 rounds were executed, an ultrahigh multiplexity of 125 proteins was obtained for each pseudocell. With its unique abilities, this single-cell spatial MIST technology has the potential to become an important method in advanced diagnosis of complex diseases.


Subject(s)
Cell Nucleus , Skin Neoplasms , Animals , Mice , Exobiology , Extracellular Space , Kidney , Polymers
7.
Clin J Am Soc Nephrol ; 18(8): 1006-1018, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37131278

ABSTRACT

BACKGROUND: AKI is associated with mortality in patients hospitalized with coronavirus disease 2019 (COVID-19); however, its incidence, geographic distribution, and temporal trends since the start of the pandemic are understudied. METHODS: Electronic health record data were obtained from 53 health systems in the United States in the National COVID Cohort Collaborative. We selected hospitalized adults diagnosed with COVID-19 between March 6, 2020, and January 6, 2022. AKI was determined with serum creatinine and diagnosis codes. Time was divided into 16-week periods (P1-6) and geographical regions into Northeast, Midwest, South, and West. Multivariable models were used to analyze the risk factors for AKI or mortality. RESULTS: Of a total cohort of 336,473, 129,176 (38%) patients had AKI. Fifty-six thousand three hundred and twenty-two (17%) lacked a diagnosis code but had AKI based on the change in serum creatinine. Similar to patients coded for AKI, these patients had higher mortality compared with those without AKI. The incidence of AKI was highest in P1 (47%; 23,097/48,947), lower in P2 (37%; 12,102/32,513), and relatively stable thereafter. Compared with the Midwest, the Northeast, South, and West had higher adjusted odds of AKI in P1. Subsequently, the South and West regions continued to have the highest relative AKI odds. In multivariable models, AKI defined by either serum creatinine or diagnostic code and the severity of AKI was associated with mortality. CONCLUSIONS: The incidence and distribution of COVID-19-associated AKI changed since the first wave of the pandemic in the United States. PODCAST: This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/CJASN/2023_08_08_CJN0000000000000192.mp3.


Subject(s)
Acute Kidney Injury , COVID-19 , Adult , Humans , COVID-19/complications , COVID-19/epidemiology , Retrospective Studies , Creatinine , Risk Factors , Acute Kidney Injury/diagnosis , Hospital Mortality
8.
J Am Soc Nephrol ; 34(5): 737-750, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36800545

ABSTRACT

Podocytes and parietal epithelial cells (PECs) are among the few principal cell types within the kidney glomerulus, the former serving as a crucial constituent of the kidney filtration barrier and the latter representing a supporting epithelial layer that adorns the inner wall of Bowman's capsule. Podocytes and PECs share a circumscript developmental lineage that only begins to diverge during the S-shaped body stage of nephron formation-occurring immediately before the emergence of the fully mature nephron. These two cell types, therefore, share a highly conserved gene expression program, evidenced by recently discovered intermediate cell types occupying a distinct spatiotemporal gene expression zone between podocytes and PECs. In addition to their homeostatic functions, podocytes and PECs also have roles in kidney pathogenesis. Rapid podocyte loss in diseases, such as rapidly progressive GN and collapsing and cellular subtypes of FSGS, is closely allied with PEC proliferation and migration toward the capillary tuft, resulting in the formation of crescents and pseudocrescents. PECs are thought to contribute to disease progression and severity, and the interdependence between these two cell types during development and in various manifestations of kidney pathology is the primary focus of this review.


Subject(s)
Glomerulosclerosis, Focal Segmental , Podocytes , Humans , Podocytes/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Kidney Glomerulus/pathology , Bowman Capsule/metabolism , Bowman Capsule/pathology , Epithelial Cells/metabolism
9.
Small ; 19(17): e2205058, 2023 04.
Article in English | MEDLINE | ID: mdl-36703524

ABSTRACT

Lip-reading provides an effective speech communication interface for people with voice disorders and for intuitive human-machine interactions. Existing systems are generally challenged by bulkiness, obtrusiveness, and poor robustness against environmental interferences. The lack of a truly natural and unobtrusive system for converting lip movements to speech precludes the continuous use and wide-scale deployment of such devices. Here, the design of a hardware-software architecture to capture, analyze, and interpret lip movements associated with either normal or silent speech is presented. The system can recognize different and similar visemes. It is robust in a noisy or dark environment. Self-adhesive, skin-conformable, and semi-transparent dry electrodes are developed to track high-fidelity speech-relevant electromyogram signals without impeding daily activities. The resulting skin-like sensors can form seamless contact with the curvilinear and dynamic surfaces of the skin, which is crucial for a high signal-to-noise ratio and minimal interference. Machine learning algorithms are employed to decode electromyogram signals and convert them to spoken words. Finally, the applications of the developed lip-reading system in augmented reality and medical service are demonstrated, which illustrate the great potential in immersive interaction and healthcare applications.


Subject(s)
Movement , Skin , Humans , Electromyography/methods , Electrodes , Machine Learning
10.
Pediatr Nephrol ; 38(4): 975-986, 2023 04.
Article in English | MEDLINE | ID: mdl-36181578

ABSTRACT

The kidney, and in particular the proximal tubule (PT), has a high demand for ATP, due to its function in bulk reabsorption of solutes. In normal PT, ATP levels are predominantly maintained by fatty acid ß-oxidation (FAO), the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. The normal PT also undertakes gluconeogenesis and metabolism of amino acids. Acute kidney injury (AKI) results in profound PT metabolic alterations, including suppression of FAO, gluconeogenesis, and metabolism of some amino acids, and upregulation of glycolytic enzymes. Recent studies have elucidated new transcriptional mechanisms regulating metabolic pathways in normal PT, as well as the metabolic switch in AKI. A number of transcription factors have been shown to play important roles in FAO, which are themselves downregulated in AKI, while hypoxia-inducible factor 1α, which is upregulated in ischemia-reperfusion injury, is a likely driver of the upregulation of glycolytic enzymes. Transcriptional regulation of amino acid metabolic pathways is less well understood, except for catabolism of branched-chain amino acids, which is likely suppressed in AKI by upregulation of Krüppel-like factor 6. This review will focus on the transcriptional regulation of specific metabolic pathways in normal PT and in AKI, as well as highlighting some of the gaps in knowledge and challenges that remain to be addressed.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Humans , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Kidney/metabolism , Kidney Tubules, Proximal/metabolism , Reperfusion Injury/metabolism , Amino Acids/metabolism , Adenosine Triphosphate/metabolism
11.
medRxiv ; 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36093355

ABSTRACT

Background: Acute kidney injury (AKI) is associated with mortality in patients hospitalized with COVID-19, however, its incidence, geographic distribution, and temporal trends since the start of the pandemic are understudied. Methods: Electronic health record data were obtained from 53 health systems in the United States (US) in the National COVID Cohort Collaborative (N3C). We selected hospitalized adults diagnosed with COVID-19 between March 6th, 2020, and January 6th, 2022. AKI was determined with serum creatinine (SCr) and diagnosis codes. Time were divided into 16-weeks (P1-6) periods and geographical regions into Northeast, Midwest, South, and West. Multivariable models were used to analyze the risk factors for AKI or mortality. Results: Out of a total cohort of 306,061, 126,478 (41.0 %) patients had AKI. Among these, 17.9% lacked a diagnosis code but had AKI based on the change in SCr. Similar to patients coded for AKI, these patients had higher mortality compared to those without AKI. The incidence of AKI was highest in P1 (49.3%), reduced in P2 (40.6%), and relatively stable thereafter. Compared to the Midwest, the Northeast, South, and West had higher adjusted AKI incidence in P1, subsequently, the South and West regions continued to have the highest relative incidence. In multivariable models, AKI defined by either SCr or diagnostic code, and the severity of AKI was associated with mortality. Conclusions: Uncoded cases of COVID-19-associated AKI are common and associated with mortality. The incidence and distribution of COVID-19-associated AKI have changed since the first wave of the pandemic in the US.

12.
Kidney360 ; 3(2): 242-257, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35373118

ABSTRACT

Background: Severe AKI is strongly associated with poor outcomes in coronavirus disease 2019 (COVID-19), but data on renal recovery are lacking. Methods: We retrospectively analyzed these associations in 3299 hospitalized patients (1338 with COVID-19 and 1961 with acute respiratory illness but who tested negative for COVID-19). Uni- and multivariable analyses were used to study mortality and recovery after Kidney Disease Improving Global Outcomes Stages 2 and 3 AKI (AKI-2/3), and Machine Learning was used to predict AKI and recovery using admission data. Long-term renal function and other outcomes were studied in a subgroup of AKI-2/3 survivors. Results: Among the 172 COVID-19-negative patients with AKI-2/3, 74% had partial and 44% complete renal recovery, whereas 12% died. Among 255 COVID-19 positive patients with AKI-2/3, lower recovery and higher mortality were noted (51% partial renal recovery, 25% complete renal recovery, 24% died). On multivariable analysis, intensive care unit admission and acute respiratory distress syndrome were associated with nonrecovery, and recovery was significantly associated with survival in COVID-19-positive patients. With Machine Learning, we were able to predict recovery from COVID-19-associated AKI-2/3 with an average precision of 0.62, and the strongest predictors of recovery were initial arterial partial pressure of oxygen and carbon dioxide, serum creatinine, potassium, lymphocyte count, and creatine phosphokinase. At 12-month follow-up, among 52 survivors with AKI-2/3, 26% COVID-19-positive and 24% COVID-19-negative patients had incident or progressive CKD. Conclusions: Recovery from COVID-19-associated moderate/severe AKI can be predicted using admission data and is associated with severity of respiratory disease and in-hospital death. The risk of CKD might be similar between COVID-19-positive and -negative patients.


Subject(s)
Acute Kidney Injury , COVID-19 , COVID-19/complications , Hospital Mortality , Humans , Retrospective Studies , Risk Factors , SARS-CoV-2
13.
Kidney Int ; 102(1): 58-77, 2022 07.
Article in English | MEDLINE | ID: mdl-35483525

ABSTRACT

Thrombotic microangiopathy (TMA) in the kidney represents the most severe manifestation of kidney microvascular endothelial injury. Despite the source of the inciting event, the diverse clinical forms of kidney TMA share dysregulation of endothelial cell transcripts and complement activation. Here, we show that endothelial-specific knockdown of Krüppel-Like Factor 4 (Klf4)ΔEC, an anti-inflammatory and antithrombotic zinc-finger transcription factor, increases the susceptibility to glomerular endothelial injury and microangiopathy in two genetic murine models that included endothelial nitric oxide synthase knockout mice and aged mice (52 weeks), as well as in a pharmacologic model of TMA using Shiga-toxin 2. In all models, Klf4ΔEC mice exhibit increased pro-thrombotic and pro-inflammatory transcripts, as well as increased complement factors C3 and C5b-9 deposition and histologic features consistent with subacute TMA. Interestingly, complement activation in Klf4ΔEC mice was accompanied by reduced expression of a key KLF4 transcriptional target and membrane bound complement regulatory gene, Cd55. To assess a potential mechanism by which KLF4 might regulate CD55 expression, we performed in silico chromatin immunoprecipitation enrichment analysis of the CD55 promotor and found KLF4 binding sites upstream from the CD55 transcription start site. Using patient-derived kidney biopsy specimens, we found glomerular expression of KLF4 and CD55 was reduced in patients with TMA as compared to control biopsies of the unaffected pole of patient kidneys removed due to kidney cancer. Thus, our data support that endothelial Klf4 is necessary for maintenance of a quiescent glomerular endothelial phenotype and its loss increases susceptibility to complement activation and induction of prothrombotic and pro-inflammatory pathways.


Subject(s)
Kruppel-Like Factor 4 , Thrombotic Microangiopathies , Animals , Complement Activation , Complement System Proteins/metabolism , Endothelium , Humans , Kidney Glomerulus/pathology , Kruppel-Like Transcription Factors/genetics , Mice , Thrombotic Microangiopathies/pathology
14.
Blood Purif ; 51(6): 513-519, 2022.
Article in English | MEDLINE | ID: mdl-34515062

ABSTRACT

INTRODUCTION: Mechanism(s) mediating critical illness in coronavirus disease 2019 (COVID-19) remain unclear. Previous reports demonstrate the existence of endotoxemia in viral infections without superimposed gram-negative bacteremia, but the rate and severity of endotoxemia in critically ill patients with COVID-19 requires further exploration. MATERIALS AND METHODS: This is a single-center cross-sectional study of 92 intensive care unit patients diagnosed with COVID-19 pneumonia. Endotoxin activity (EA) was measured in patients that met the following criteria: (1) age ≥18 years and (2) multi-organ dysfunction score >9 from March 24, 2020, to June 20, 2020. RESULTS: A total of 32 patients met the inclusion/exclusion criteria for measurement of EA. The median age of the study cohort was 60 years with a majority male (21/32, 65%) with hypertension (50%). A significant proportion of the patients exhibited either elevated EA in the intermediate range (0.40-0.59 EA units) (10/32, 31%) or high range (≥0.60 EA units) (14/32, 44%) or were nonresponders (NRs, low neutrophil response) to EA (6/32, 19%), with the presence of gram-negative bacteremia only in 2/32 (6%) patients. Low EA was reported in 2/32 patients. NRs (5/6, 83%) and patients with high EA (7/14, 50%) exhibited higher acute kidney injury (AKI) as compared to patients with low/intermediate EA level (1/12, 8.3%). DISCUSSION/CONCLUSION: Elevated EA was observed in a large majority of critically ill patients with COVID-19 and multi-organ dysfunction despite a low incidence of concurrent gram-negative bacteremia. While we observed that elevated EA and nonresponsiveness to EA were associated with AKI in critically ill patients with COVID-19, these findings require further validation in larger longitudinal cohorts.


Subject(s)
Acute Kidney Injury , Bacteremia , COVID-19 , Endotoxemia , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Acute Kidney Injury/therapy , Adolescent , Bacteremia/complications , COVID-19/complications , Critical Illness , Cross-Sectional Studies , Endotoxemia/complications , Humans , Intensive Care Units , Male , Middle Aged , Retrospective Studies
15.
Front Pediatr ; 9: 743301, 2021.
Article in English | MEDLINE | ID: mdl-34900859

ABSTRACT

Kidney disease is an epidemic that affects more than 600 million people worldwide. The socioeconomic impacts of the disease disproportionately affect Hispanic and non-Hispanic Black Americans, making the disease an issue of social inequality. The urgency of this situation has only become worse during the COVID-19 pandemic, as those who are hospitalized for COVID-19 have an increased risk of kidney failure. For researchers, the kidney is a complex organ that is difficult to accurately model and understand. Traditional cell culture models are not adequate for studying the functional intricacies of the kidney, but recent experiments have offered improvements for understanding these systems. Recent progress includes organoid modeling, 3D bioprinting, decellularization, and microfluidics. Here, we offer a review of the most recent advances in kidney bioengineering.

16.
Diabetes ; 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34957485

ABSTRACT

Increased oxidative stress in glomerular endothelial cells (GEnCs) contributes to early diabetic kidney disease (DKD). While mitochondrial respiratory complex IV activity is reduced in DKD, it remains unclear whether this is a driver or a consequence of oxidative stress in GEnCs. Synthesis of cytochrome C oxidase 2 (SCO2), a key metallochaperone in the electron transport chain, is critical to the biogenesis and assembly of subunits required for functional respiratory complex IV activity. Here, we investigated the effects of Sco2 hypomorphs (Sco2KO/KI, Sco2KI/KI), with a functional loss of SCO2, in the progression of DKD using a murine model of Type II Diabetes Mellitus, db/db mice. Diabetic Sco2KO/KI and Sco2KI/KI hypomorphs exhibited a reduction in complex IV activity, but an improvement in albuminuria, serum creatinine, and histomorphometric evidence of early DKD as compared to db/db mice. Single-nucleus RNA sequencing with gene set enrichment analysis of differentially expressed genes in the endothelial cluster of Sco2KO/KI;db/db mice demonstrated an increase in genes involved in VEGF-VEGFR2 signaling and reduced oxidative stress as compared to db/db mice. These data suggest that reduced complex IV activity due to a loss of functional SCO2 might be protective in GEnCs in early DKD.

17.
Diabetes ; 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34702781

ABSTRACT

Increased oxidative stress in glomerular endothelial cells (GEnCs) contributes to early diabetic kidney disease (DKD). While mitochondrial respiratory complex IV activity is reduced in DKD, it remains unclear whether this is a driver or a consequence of oxidative stress in GEnCs. Synthesis of cytochrome C oxidase 2 (SCO2), a key metallochaperone in the electron transport chain, is critical to the biogenesis and assembly of subunits required for functional respiratory complex IV activity. Here, we investigated the effects of Sco2 hypomorphs (Sco2 KO/KI , Sco2 KI/KI ), with a functional loss of SCO2, in the progression of DKD using a murine model of Type II Diabetes Mellitus, db/db mice. Diabetic Sco2 KO/KI and Sco2 KI/KI hypomorphs exhibited a reduction in complex IV activity, but an improvement in albuminuria, serum creatinine, and histomorphometric evidence of early DKD as compared to db/db mice. Single-nucleus RNA sequencing with gene set enrichment analysis of differentially expressed genes in the endothelial cluster of Sco2 KO/KI ;db/db mice demonstrated an increase in genes involved in VEGF-VEGFR2 signaling and reduced oxidative stress as compared to db/db mice. These data suggest that reduced complex IV activity due to a loss of functional SCO2 might be protective in GEnCs in early DKD.

18.
Kidney Int ; 100(6): 1250-1267, 2021 12.
Article in English | MEDLINE | ID: mdl-34634362

ABSTRACT

Loss of fatty acid ß-oxidation (FAO) in the proximal tubule is a critical mediator of acute kidney injury and eventual fibrosis. However, transcriptional mediators of FAO in proximal tubule injury remain understudied. Krüppel-like factor 15 (KLF15), a highly enriched zinc-finger transcription factor in the proximal tubule, was significantly reduced in proximal tubule cells after aristolochic acid I (AAI) treatment, a proximal tubule-specific injury model. Proximal tubule specific knockout of Klf15 exacerbated proximal tubule injury and kidney function decline compared to control mice during the active phase of AAI treatment, and after ischemia-reperfusion injury. Furthermore, along with worsening proximal tubule injury and kidney function decline, knockout mice exhibited increased kidney fibrosis as compared to control mice during the remodeling phase after AAI treatment. RNA-sequencing of kidney cortex demonstrated increased transcripts involved in immune system and integrin signaling pathways and decreased transcripts encompassing metabolic pathways, specifically FAO, and PPARα signaling, in knockout versus control mice after AAI treatment. In silico and experimental chromatin immunoprecipitation studies collectively demonstrated that KLF15 occupied the promoter region of key FAO genes, CPT1A and ACAA2, in close proximity to transcription factor PPARα binding sites. While the loss of Klf15 reduced the expression of Cpt1a and Acaa2 and led to compromised FAO, induction of KLF15 partially rescued loss of FAO in AAI-treated cells. Klf15, Ppara, Cpt1a, and Acaa2 expression was also decreased in other mouse kidney injury models. Tubulointerstitial KLF15 independently correlated with eGFR, PPARA and CPT1A appearance in expression arrays from human kidney biopsies. Thus, proximal tubule-specific loss of Klf15 exacerbates acute kidney injury and fibrosis, likely due to loss of interaction with PPARα leading to loss of FAO gene transcription.


Subject(s)
Acute Kidney Injury , Fatty Acids/metabolism , Kruppel-Like Transcription Factors , Acute Kidney Injury/chemically induced , Acute Kidney Injury/genetics , Animals , Kidney , Kidney Tubules, Proximal , Kruppel-Like Transcription Factors/genetics , Mice , Mice, Knockout
19.
Sci Adv ; 7(36): eabg6600, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34516901

ABSTRACT

Podocyte loss triggering aberrant activation and proliferation of parietal epithelial cells (PECs) is a central pathogenic event in proliferative glomerulopathies. Podocyte-specific Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor, is essential for maintaining podocyte homeostasis and PEC quiescence. Using mice with podocyte-specific knockdown of Klf4, we conducted glomerular RNA-sequencing, tandem mass spectrometry, and single-nucleus RNA-sequencing to identify cell-specific transcriptional changes that trigger PEC activation due to podocyte loss. Integration with in silico chromatin immunoprecipitation identified key ligand-receptor interactions, such as fibronectin 1 (FN1)­αVß6, between podocytes and PECs dependent on KLF4 and downstream signal transducer and activator of transcription 3 (STAT3) signaling. Knockdown of Itgb6 in PECs attenuated PEC activation. Additionally, podocyte-specific induction of human KLF4 or pharmacological inhibition of downstream STAT3 activation reduced FN1 and integrin ß 6 (ITGB6) expression and mitigated podocyte loss and PEC activation in mice. Targeting podocyte-PEC crosstalk might be a critical therapeutic strategy in proliferative glomerulopathies.

20.
JAMA Netw Open ; 4(7): e2116901, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34255046

ABSTRACT

Importance: The National COVID Cohort Collaborative (N3C) is a centralized, harmonized, high-granularity electronic health record repository that is the largest, most representative COVID-19 cohort to date. This multicenter data set can support robust evidence-based development of predictive and diagnostic tools and inform clinical care and policy. Objectives: To evaluate COVID-19 severity and risk factors over time and assess the use of machine learning to predict clinical severity. Design, Setting, and Participants: In a retrospective cohort study of 1 926 526 US adults with SARS-CoV-2 infection (polymerase chain reaction >99% or antigen <1%) and adult patients without SARS-CoV-2 infection who served as controls from 34 medical centers nationwide between January 1, 2020, and December 7, 2020, patients were stratified using a World Health Organization COVID-19 severity scale and demographic characteristics. Differences between groups over time were evaluated using multivariable logistic regression. Random forest and XGBoost models were used to predict severe clinical course (death, discharge to hospice, invasive ventilatory support, or extracorporeal membrane oxygenation). Main Outcomes and Measures: Patient demographic characteristics and COVID-19 severity using the World Health Organization COVID-19 severity scale and differences between groups over time using multivariable logistic regression. Results: The cohort included 174 568 adults who tested positive for SARS-CoV-2 (mean [SD] age, 44.4 [18.6] years; 53.2% female) and 1 133 848 adult controls who tested negative for SARS-CoV-2 (mean [SD] age, 49.5 [19.2] years; 57.1% female). Of the 174 568 adults with SARS-CoV-2, 32 472 (18.6%) were hospitalized, and 6565 (20.2%) of those had a severe clinical course (invasive ventilatory support, extracorporeal membrane oxygenation, death, or discharge to hospice). Of the hospitalized patients, mortality was 11.6% overall and decreased from 16.4% in March to April 2020 to 8.6% in September to October 2020 (P = .002 for monthly trend). Using 64 inputs available on the first hospital day, this study predicted a severe clinical course using random forest and XGBoost models (area under the receiver operating curve = 0.87 for both) that were stable over time. The factor most strongly associated with clinical severity was pH; this result was consistent across machine learning methods. In a separate multivariable logistic regression model built for inference, age (odds ratio [OR], 1.03 per year; 95% CI, 1.03-1.04), male sex (OR, 1.60; 95% CI, 1.51-1.69), liver disease (OR, 1.20; 95% CI, 1.08-1.34), dementia (OR, 1.26; 95% CI, 1.13-1.41), African American (OR, 1.12; 95% CI, 1.05-1.20) and Asian (OR, 1.33; 95% CI, 1.12-1.57) race, and obesity (OR, 1.36; 95% CI, 1.27-1.46) were independently associated with higher clinical severity. Conclusions and Relevance: This cohort study found that COVID-19 mortality decreased over time during 2020 and that patient demographic characteristics and comorbidities were associated with higher clinical severity. The machine learning models accurately predicted ultimate clinical severity using commonly collected clinical data from the first 24 hours of a hospital admission.


Subject(s)
COVID-19 , Databases, Factual , Forecasting , Hospitalization , Models, Biological , Severity of Illness Index , Adult , Aged , Aged, 80 and over , COVID-19/ethnology , COVID-19/mortality , Comorbidity , Ethnicity , Extracorporeal Membrane Oxygenation , Female , Humans , Hydrogen-Ion Concentration , Male , Middle Aged , Pandemics , Respiration, Artificial , Retrospective Studies , Risk Factors , SARS-CoV-2 , United States , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL