Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Metab Eng ; 81: 157-166, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38081506

ABSTRACT

Rare diseases are, despite their name, collectively common and millions of people are affected daily of conditions where treatment often is unavailable. Sulfatases are a large family of activating enzymes related to several of these diseases. Heritable genetic variations in sulfatases may lead to impaired activity and a reduced macromolecular breakdown within the lysosome, with several severe and lethal conditions as a consequence. While therapeutic options are scarce, treatment for some sulfatase deficiencies by recombinant enzyme replacement are available. The recombinant production of such sulfatases suffers greatly from both low product activity and yield, further limiting accessibility for patient groups. To mitigate the low product activity, we have investigated cellular properties through computational evaluation of cultures with varying media conditions and comparison of two CHO clones with different levels of one active sulfatase variant. Transcriptome analysis identified 18 genes in secretory pathways correlating with increased sulfatase production. Experimental validation by upregulation of a set of three key genes improved the specific enzymatic activity at varying degree up to 150-fold in another sulfatase variant, broadcasting general production benefits. We also identified a correlation between product mRNA levels and sulfatase activity that generated an increase in sulfatase activity when expressed with a weaker promoter. Furthermore, we suggest that our proposed workflow for resolving bottlenecks in cellular machineries, to be useful for improvements of cell factories for other biologics as well.


Subject(s)
Sulfatases , Humans , Sulfatases/genetics , Sulfatases/metabolism
2.
Biochem Biophys Res Commun ; 655: 75-81, 2023 05 07.
Article in English | MEDLINE | ID: mdl-36933310

ABSTRACT

Within the field of combinatorial protein engineering there is a great demand for robust high-throughput selection platforms that allow for unbiased protein library display, affinity-based screening, and amplification of selected clones. We have previously described the development of a staphylococcal display system used for displaying both alternative-scaffolds and antibody-derived proteins. In this study, the objective was to generate an improved expression vector for displaying and screening a high-complexity naïve affibody library, and to facilitate downstream validation of isolated clones. A high-affinity normalization tag, consisting of two ABD-moieties, was introduced to simplify off-rate screening procedures. In addition, the vector was furnished with a TEV protease substrate recognition sequence upstream of the protein library which enables proteolytic processing of the displayed construct for improved binding signal. In the library design, 13 of the 58 surface-exposed amino acid positions were selected for full randomization (except proline and cysteine) using trinucleotide technology. The genetic library was successfully transformed to Staphylococcus carnosus cells, generating a protein library exceeding 109 members. De novo selections against three target proteins (CD14, MAPK9 and the affibody ZEGFR:2377) were successfully performed using magnetic bead-based capture followed by flow-cytometric sorting, yielding affibody molecules binding their respective target with nanomolar affinity. Taken together, the results demonstrate the feasibility of the staphylococcal display system and the proposed selection procedure to generate new affibody molecules with high affinity.


Subject(s)
Peptide Library , Protein Engineering , Flow Cytometry/methods , Protein Engineering/methods , Protein Binding
3.
Cell Rep ; 39(11): 110936, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35705050

ABSTRACT

Recombinant protein production can cause severe stress on cellular metabolism, resulting in limited titer and product quality. To investigate cellular and metabolic characteristics associated with these limitations, we compare HEK293 clones producing either erythropoietin (EPO) (secretory) or GFP (non-secretory) protein at different rates. Transcriptomic and functional analyses indicate significantly higher metabolism and oxidative phosphorylation in EPO producers compared with parental and GFP cells. In addition, ribosomal genes exhibit specific expression patterns depending on the recombinant protein and the production rate. In a clone displaying a dramatically increased EPO secretion, we detect higher gene expression related to negative regulation of endoplasmic reticulum (ER) stress, including upregulation of ATF6B, which aids EPO production in a subset of clones by overexpression or small interfering RNA (siRNA) knockdown. Our results offer potential target pathways and genes for further development of the secretory power in mammalian cell factories.


Subject(s)
Endoplasmic Reticulum Stress , Erythropoietin , Animals , Endoplasmic Reticulum Stress/physiology , Erythropoietin/genetics , Erythropoietin/metabolism , HEK293 Cells/metabolism , Humans , Mammals/metabolism , Protein Transport , Recombinant Proteins/metabolism
4.
Metab Eng ; 72: 171-187, 2022 07.
Article in English | MEDLINE | ID: mdl-35301123

ABSTRACT

Biologics represent the fastest growing group of therapeutics, but many advanced recombinant protein moieties remain difficult to produce. Here, we identify metabolic engineering targets limiting expression of recombinant human proteins through a systems biology analysis of the transcriptomes of CHO and HEK293 during recombinant expression. In an expression comparison of 24 difficult to express proteins, one third of the challenging human proteins displayed improved secretion upon host cell swapping from CHO to HEK293. Guided by a comprehensive transcriptomics comparison between cell lines, especially highlighting differences in secretory pathway utilization, a co-expression screening of 21 secretory pathway components validated ATF4, SRP9, JUN, PDIA3 and HSPA8 as productivity boosters in CHO. Moreover, more heavily glycosylated products benefitted more from the elevated activities of the N- and O-glycosyltransferases found in HEK293. Collectively, our results demonstrate the utilization of HEK293 for expression rescue of human proteins and suggest a methodology for identification of secretory pathway components for metabolic engineering of HEK293 and CHO.


Subject(s)
Secretory Pathway , Animals , CHO Cells , Cricetinae , Cricetulus , HEK293 Cells , Humans , Recombinant Proteins , Secretory Pathway/genetics
5.
N Biotechnol ; 68: 68-76, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35123066

ABSTRACT

Aggregation of therapeutic bispecific antibodies negatively affects the yield, shelf-life, efficacy and safety of these products. Pairs of stable Chinese hamster ovary (CHO) cell lines produced two difficult-to-express bispecific antibodies with different levels of aggregated product (10-75% aggregate) in a miniaturised bioreactor system. Here, transcriptome analysis was used to interpret the biological causes for the aggregation and to identify strategies to improve product yield and quality. Differential expression- and gene set analysis revealed upregulated proteasomal degradation, unfolded protein response and autophagy processes to be correlated with reduced protein aggregation. Fourteen candidate genes with the potential to reduce aggregation were co-expressed in the stable clones for validation. Of these, HSP90B1, DDIT3, AKT1S1, and ATG16L1, were found to significantly lower aggregation in the stable producers and two (HSP90B1 and DNAJC3) increased titres of the anti-HER2 monoclonal antibody trastuzumab by 50% during transient expression. It is suggested that this approach could be of general use for defining aggregation bottlenecks in CHO cells.


Subject(s)
Antibodies, Bispecific , Animals , Antibodies, Bispecific/metabolism , Autophagy , CHO Cells , Cricetinae , Cricetulus , Systems Biology
7.
iScience ; 23(11): 101653, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33145483

ABSTRACT

Human embryonic kidney cells HEK293 can be used for the production of therapeutic glycoproteins requiring human post-translational modifications. High cell density perfusion processes are advantageous for such production but are challenging due to the shear sensitivity of HEK293 cells. To understand the impact of hollow filter cell separation devices, cells were cultured in bioreactors operated with tangential flow filtration (TFF) or alternating tangential flow filtration (ATF) at various flow rates. The average theoretical velocity profile in these devices showed a lower shear stress for ATF by a factor 0.637 compared to TFF. This was experimentally validated and, furthermore, transcriptomic evaluation provided insights into the underlying cellular processes. High shear caused cellular stress leading to apoptosis by three pathways, i.e. endoplasmic reticulum stress, cytoskeleton reorganization, and extrinsic signaling pathways. Positive effects of mild shear stress were observed, with increased recombinant erythropoietin production and increased gene expression associated with transcription and protein phosphorylation.

8.
Sci Rep ; 10(1): 18996, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33149219

ABSTRACT

The need for new safe and efficacious therapies has led to an increased focus on biologics produced in mammalian cells. The human cell line HEK293 has bio-synthetic potential for human-like production attributes and is currently used for manufacturing of several therapeutic proteins and viral vectors. Despite the increased popularity of this strain we still have limited knowledge on the genetic composition of its derivatives. Here we present a genomic, transcriptomic and metabolic gene analysis of six of the most widely used HEK293 cell lines. Changes in gene copy and expression between industrial progeny cell lines and the original HEK293 were associated with cellular component organization, cell motility and cell adhesion. Changes in gene expression between adherent and suspension derivatives highlighted switching in cholesterol biosynthesis and expression of five key genes (RARG, ID1, ZIC1, LOX and DHRS3), a pattern validated in 63 human adherent or suspension cell lines of other origin.


Subject(s)
Gene Expression Profiling/methods , HEK293 Cells/cytology , Metabolomics/methods , Cell Adhesion , Cell Culture Techniques , Cell Movement , Cholesterol/biosynthesis , Gene Dosage , Gene Expression Regulation , Gene Regulatory Networks , HEK293 Cells/chemistry , Humans , Protein Engineering
9.
J Biotechnol ; 309: 44-52, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31891733

ABSTRACT

Process intensification in mammalian cell culture-based recombinant protein production has been achieved by high cell density perfusion exceeding 108 cells/mL in the recent years. As the majority of therapeutic proteins are produced in Chinese Hamster Ovary (CHO) cells, intensified perfusion processes have been mainly developed for this type of host cell line. However, the use of CHO cells can result in non-human posttranslational modifications of the protein of interest, which may be disadvantageous compared with human cell lines. In this study, we developed a high cell density perfusion process of Human Embryonic Kidney (HEK293) cells producing recombinant human Erythropoietin (rhEPO). Firstly, a small-scale perfusion system from commercial bench-top screening bioreactors was developed for <250 mL working volume. Then, after the first trial runs with CHO cells, the system was modified for HEK293 cells (more sensitive than CHO cells) to achieve a higher oxygen transfer under mild aeration and agitation conditions. Steady states for medium (20 × 106 cells/mL) and high cell densities (80 × 106 cells/mL), normal process temperature (37 °C) and mild hypothermia (33 °C) as well as different cell specific perfusion rates (CSPR) from 10 to 60 pL/cell/day were applied to study the performance of the culture. The volumetric productivity was maximized for the high cell density steady state but decreased when an extremely low CSPR of 10 pL/cell/day was applied. The shift from high to low CSPR strongly reduced the nutrient uptake rates. The results from our study show that human cell lines, such as HEK293 can be used for intensified perfusion processes.


Subject(s)
Bioreactors , Cell Culture Techniques/methods , Erythropoietin/biosynthesis , HEK293 Cells/metabolism , Perfusion/methods , Recombinant Proteins/biosynthesis , Animals , CHO Cells/metabolism , Cell Count , Cricetulus , Humans , Oxygen
10.
Sci Signal ; 12(609)2019 11 26.
Article in English | MEDLINE | ID: mdl-31772123

ABSTRACT

The proteins secreted by human cells (collectively referred to as the secretome) are important not only for the basic understanding of human biology but also for the identification of potential targets for future diagnostics and therapies. Here, we present a comprehensive analysis of proteins predicted to be secreted in human cells, which provides information about their final localization in the human body, including the proteins actively secreted to peripheral blood. The analysis suggests that a large number of the proteins of the secretome are not secreted out of the cell, but instead are retained intracellularly, whereas another large group of proteins were identified that are predicted to be retained locally at the tissue of expression and not secreted into the blood. Proteins detected in the human blood by mass spectrometry-based proteomics and antibody-based immunoassays are also presented with estimates of their concentrations in the blood. The results are presented in an updated version 19 of the Human Protein Atlas in which each gene encoding a secretome protein is annotated to provide an open-access knowledge resource of the human secretome, including body-wide expression data, spatial localization data down to the single-cell and subcellular levels, and data about the presence of proteins that are detectable in the blood.


Subject(s)
Databases, Protein , Proteome/metabolism , Proteomics , Humans
11.
MAbs ; 8(7): 1195-1209, 2016 10.
Article in English | MEDLINE | ID: mdl-27532938

ABSTRACT

The human epidermal growth factor receptor 3 (HER3) has in recent years been recognized as a key node in the complex signaling network of many different cancers. It is implicated in de novo and acquired resistance against therapies targeting other growth factor receptors, e.g., EGFR, HER2, and it is a major activator of the PI3K/Akt signaling pathway. Consequently, HER3 has attracted substantial attention, and is today a key target for drugs in clinical development. Sophisticated protein engineering approaches have enabled the generation of a range of different affinity proteins targeting this receptor, including antibodies and alternative scaffolds that are either mono- or bispecific. Here, we describe HER3 and its role as a key tumor target, and give a comprehensive review of HER3-targeted proteins currently in development, including discussions on the opportunities and challenges of targeting this receptor.


Subject(s)
Antibodies, Bispecific , Antibodies, Monoclonal , Receptor, ErbB-3 , Animals , Humans
12.
Oncol Rep ; 34(2): 1042-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26059265

ABSTRACT

Expression of human epidermal growth factor receptor type 3 (HER3) in malignant tumors has been associated with resistance to a variety of anticancer therapies. Several anti-HER3 monoclonal antibodies are currently under pre-clinical and clinical development aiming to overcome HER3-mediated resistance. Radionuclide molecular imaging of HER3 expression may improve treatment by allowing the selection of suitable patients for HER3-targeted therapy. Affibody molecules are a class of small (7 kDa) high-affinity targeting proteins with appreciable potential as molecular imaging probes. In a recent study, we selected affibody molecules with affinity to HER3 at a low picomolar range. The aim of the present study was to develop an anti-HER3 affibody molecule suitable for labeling with radiometals. The HEHEHE-Z08698-NOTA and HEHEHE-Z08699-NOTA HER3-specific affibody molecules were labeled with indium-111 (111In) and assessed in vitro and in vivo for imaging properties using single photon emission computed tomography (SPECT). Labeling of HEHEHE-Z08698-NOTA and HEHEHE-Z08699-NOTA with 111In provided stable conjugates. In vitro cell tests demonstrated specific binding of the two conjugates to HER3-expressing BT-474 breast carcinoma cells. In mice bearing BT-474 xenografts, the tumor uptake of the two conjugates was receptor-specific. Direct in vivo comparison of 111In-HEHEHE-Z08698-NOTA and 111In-HEHEHE-Z08699­NOTA demonstrated that the two conjugates provided equal radioactivity uptake in tumors, although the tumor-to-blood ratio was improved for 111In-HEHEHE-Z08698-NOTA [12 ± 3 vs. 8 ± 1, 4 h post injection (p.i.)] due to more efficient blood clearance. 111In-HEHEHE-Z08698-NOTA is a promising candidate for imaging of HER3-expression in malignant tumors using SPECT. Results of the present study indicate that this conjugate could be used for patient stratification for anti-HER3 therapy.


Subject(s)
Breast Neoplasms/diagnostic imaging , Indium Radioisotopes/chemistry , Radiopharmaceuticals/pharmacokinetics , Receptor, ErbB-3/metabolism , Recombinant Fusion Proteins/pharmacokinetics , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Humans , Mice , Molecular Imaging , Neoplasm Transplantation , Radionuclide Imaging , Radiopharmaceuticals/chemistry , Recombinant Fusion Proteins/chemistry
13.
Eur J Nucl Med Mol Imaging ; 41(7): 1450-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24622956

ABSTRACT

PURPOSE: Human epidermal growth factor receptor type 3 (HER3) is a transmembrane receptor tyrosine kinase belonging to the HER (ErbB) receptor family. Membranous expression of HER3 is associated with trastuzumab resistance in breast cancer and the transition to androgen independence in prostate cancer. Imaging of HER3 expression in malignant tumors may provide important diagnostic information that can influence patient management. Affibody molecules with low picomolar affinity to HER3 were recently selected. The aim of this study was to investigate the feasibility of HER3 imaging using radiolabeled Affibody molecules. METHODS: A HER3-binding Affibody molecule, Z08699, with a HEHEHE-tag on N-terminus was labeled with (99m)Tc(CO)3 using an IsoLink kit. In vitro and in vivo binding specificity and the cellular processing of the labeled binder were evaluated. Biodistribution of (99m)Tc(CO)3-HEHEHE-Z08699 was studied over time in mice bearing HER3-expressing xenografts. RESULTS: HEHEHE-Z08699 was labeled with (99m)Tc(CO)3 with an isolated yield of >80 % and a purity of >99 %. Binding of (99m)Tc(CO)3-HEHEHE-Z08699 was specific to BT474 and MCF7 (breast cancer), and LS174T (colon cancer) cells. Cellular processing showed rapid binding and relatively quick internalization of the receptor/Affibody molecule complex (70 % of cell-associated radioactivity was internalized after 24 h). The tumor targeting was receptor mediated and the excretion was predominantly renal. Receptor-mediated uptake was also found in the liver, lung, stomach, intestine, and salivary glands. At 4 h pi, tumor-to-blood ratios were 7 ± 3 for BT474, and 6 ± 2 for LS174T xenografts. LS174T tumors were visualized by microSPECT 4 h pi. CONCLUSIONS: The results of this study suggest the feasibility of HER3-imaging in malignant tumors using Affibody molecules.


Subject(s)
Cell Transformation, Neoplastic , Gene Expression Regulation, Neoplastic , Organotechnetium Compounds/chemistry , Receptor, ErbB-3/metabolism , Recombinant Fusion Proteins/chemistry , Tomography, Emission-Computed, Single-Photon/methods , Animals , Cell Line, Tumor , Drug Stability , Female , Humans , Mice , Organotechnetium Compounds/pharmacokinetics , Tissue Distribution
14.
Biotechnol J ; 9(9): 1215-22, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24678002

ABSTRACT

Emerging strategies in cancer biotherapy include the generation and application of bispecific antibodies, targeting two tumor-associated antigens for improved tumor selectivity and potency. Here, an alternative format for bispecific molecules was designed and investigated, in which two Affibody molecules were linked by an albumin-binding domain (ABD). Affibody molecules are small (6 kDa) affinity proteins and this new format allows for engineering of molecules with similar function as full-length bispecific antibodies, but in a dramatically smaller size (around eight-fold smaller). The ABD was intended to function both as a tag for affinity purification as well as for in vivo half-life extension in future preclinical and clinical investigations. Affinity-purified bispecific Affibody molecules, targeting HER2 and HER3, showed simultaneous binding to the three target proteins (HER2, HER3, and albumin) when investigated in biosensor assays. Moreover, simultaneous interactions with the receptors and albumin were demonstrated using flow cytometry on cancer cells. The bispecific Affibody molecules were also able to block ligand-induced phosphorylation of the HER receptors, indicating an anti-proliferative effect. We believe that this compact and flexible format has great potential for developing new potent bispecific affinity proteins in the future, as it combines the benefits of a small size (e.g. improved tissue penetration and reduced cost of goods) with a long circulatory half-life.


Subject(s)
Albumins/immunology , Antibodies, Bispecific/immunology , Protein Binding/immunology , Receptor, ErbB-2/immunology , Receptor, ErbB-3/immunology , Bioengineering/methods , Biosensing Techniques/methods , Cell Line, Tumor , Cell Proliferation/drug effects , Chromatography, Affinity/methods , Half-Life , Humans , Ligands , Phosphorylation/immunology , Protein Structure, Tertiary
15.
PLoS One ; 8(5): e62791, 2013.
Article in English | MEDLINE | ID: mdl-23675426

ABSTRACT

The HER3 receptor is implicated in the progression of various cancers as well as in resistance to several currently used drugs, and is hence a potential target for development of new therapies. We have previously generated Affibody molecules that inhibit heregulin-induced signaling of the HER3 pathways. The aim of this study was to improve the affinity of the binders to hopefully increase receptor inhibition efficacy and enable a high receptor-mediated uptake in tumors. We explored a novel strategy for affinity maturation of Affibody molecules that is based on alanine scanning followed by design of library diversification to mimic the result from an error-prone PCR reaction, but with full control over mutated positions and thus less biases. Using bacterial surface display and flow-cytometric sorting of the maturation library, the affinity for HER3 was improved more than 30-fold down to 21 pM. The affinity is among the higher that has been reported for Affibody molecules and we believe that the maturation strategy should be generally applicable for improvement of affinity proteins. The new binders also demonstrated an improved thermal stability as well as complete refolding after denaturation. Moreover, inhibition of ligand-induced proliferation of HER3-positive breast cancer cells was improved more than two orders of magnitude compared to the previously best-performing clone. Radiolabeled Affibody molecules showed specific targeting of a number of HER3-positive cell lines in vitro as well as targeting of HER3 in in vivo mouse models and represent promising candidates for future development of targeted therapies and diagnostics.


Subject(s)
Neoplasms/metabolism , Receptor, ErbB-3/metabolism , Recombinant Fusion Proteins/pharmacology , Signal Transduction/drug effects , Alanine , Animals , Biosensing Techniques , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Surface Display Techniques , Circular Dichroism , Female , Humans , Inhibitory Concentration 50 , Ligands , Mice , Mutation , Peptide Library , Phosphorylation/drug effects , Protein Binding , Receptor, ErbB-3/chemistry , Receptor, ErbB-3/genetics , Recombinant Fusion Proteins/metabolism
16.
PLoS One ; 7(6): e40023, 2012.
Article in English | MEDLINE | ID: mdl-22768204

ABSTRACT

Recent studies have led to the recognition of the epidermal growth factor receptor HER3 as a key player in cancer, and consequently this receptor has gained increased interest as a target for cancer therapy. We have previously generated several Affibody molecules with subnanomolar affinity for the HER3 receptor. Here, we investigate the effects of two of these HER3-specific Affibody molecules, Z05416 and Z05417, on different HER3-overexpressing cancer cell lines. Using flow cytometry and confocal microscopy, the Affibody molecules were shown to bind to HER3 on three different cell lines. Furthermore, the receptor binding of the natural ligand heregulin (HRG) was blocked by addition of Affibody molecules. In addition, both molecules suppressed HRG-induced HER3 and HER2 phosphorylation in MCF-7 cells, as well as HER3 phosphorylation in constantly HER2-activated SKBR-3 cells. Importantly, Western blot analysis also revealed that HRG-induced downstream signalling through the Ras-MAPK pathway as well as the PI3K-Akt pathway was blocked by the Affibody molecules. Finally, in an in vitro proliferation assay, the two Affibody molecules demonstrated complete inhibition of HRG-induced cancer cell growth. Taken together, our findings demonstrate that Z05416 and Z05417 exert an anti-proliferative effect on two breast cancer cell lines by inhibiting HRG-induced phosphorylation of HER3, suggesting that the Affibody molecules are promising candidates for future HER3-targeted cancer therapy.


Subject(s)
Receptor, ErbB-3/metabolism , Recombinant Fusion Proteins/metabolism , Binding, Competitive , Blotting, Western , Cell Line, Tumor , Cell Proliferation , Enzyme-Linked Immunosorbent Assay , Extracellular Signal-Regulated MAP Kinases/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Humans , Ligands , Microscopy, Confocal , Neuregulin-1/metabolism , Phosphorylation , Protein Binding , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Cell Surface/metabolism
17.
Protein Eng Des Sel ; 24(4): 385-96, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21177282

ABSTRACT

Emerging evidence suggests that the catalytically inactive ErbB3 (HER3) protein plays a fundamental role in normal tyrosine kinase receptor signaling as well as in aberrant functioning of these signaling pathways, resulting in several forms of human cancers. ErbB3 has recently also been implicated in resistance to ErbB2-targeting therapies. Here we report the generation of high-affinity ErbB3-specific Affibody molecules intended for future molecular imaging and biotherapeutic applications. Using a high-complexity phage-displayed Affibody library, a number of ErbB3 binders were isolated and specific cell-binding activity was demonstrated in immunofluorescence microscopic studies. Subsequently, a second-generation library was constructed based on sequences of the candidates from the phage display selection. By exploiting the sensitive affinity discrimination capacity of a novel bacterial surface display technology, the affinity of candidate Affibody molecules was further increased down to subnanomolar affinity. In summary, the demonstrated specific targeting of native ErbB3 receptor on human cancer cell lines as well as competition with the heregulin/ErbB3 interaction indicates that these novel biological agents may become useful tools for diagnostic and therapeutic targeting of ErbB3-expressing cancers. Our studies also highlight the powerful approach of combining the advantages of different display technologies for generation of functional high-affinity protein-based binders. Potential future applications, such as radionuclide-based diagnosis and treatment of human cancers are discussed.


Subject(s)
Antibody Affinity/immunology , Peptide Library , Receptor, ErbB-3/immunology , Recombinant Fusion Proteins/biosynthesis , Amino Acid Sequence , Antibody Affinity/genetics , Humans , Molecular Sequence Data , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Staphylococcus
18.
Recent Pat Biotechnol ; 4(3): 171-82, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21171954

ABSTRACT

The field of combinatorial protein engineering for generation of new affinity proteins started in the mid 80s by the development of phage display. Although phage display is a prime example of a simple yet highly efficient method, manifested by still being the standard technique 25 years later, new alternative technologies are available today. One of the more successful new display technologies is cell display. Here we review the field of cell display for directed evolution purposes, with focus on a recently developed method employing Gram-positive staphylococci as display host. Patents on the most commonly used cell display systems and on different modifications as well as specific applications of these systems are also included. General strategies for selection of new affinity proteins from cell-displayed libraries are discussed, with detailed examples mainly from studies on the staphylococcal display system. In addition, strategies for characterization of recombinant proteins on the staphylococcal cell surface, with an emphasis on an approach for epitope mapping of antibodies, are included.


Subject(s)
Antibodies/chemistry , Epitope Mapping/methods , Protein Engineering/methods , Recombinant Proteins/chemistry , Staphylococcus/metabolism , Antibodies/genetics , Cell Membrane/metabolism , Membrane Glycoproteins/chemistry , Patents as Topic , Recombinant Proteins/genetics , Staphylococcus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...