Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Oncol ; 44(6): 1998-2008, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24718894

ABSTRACT

Correct staging of prostate cancer is an unmet clinical need. Radionuclide targeting of prostate-specific membrane antigen (PSMA) with 111In-labeled capromab pendetide (ProstaScint) is a clinical option for prostate cancer staging. We propose the use of 124I-labeled capromab to decrease the retention of radioactivity in healthy organs (due to the non-residualizing properties of the radiolabel). The use of 124I as a label should increase imaging sensitivity due to the advantages of PET as an imaging modality. Capromab targets the intracellular domain of PSMA; accumulation of radioactivity in the tumor should not depend on internalization of the antigen/antibody complex. Capromab was iodinated, and its targeting properties were compared with indium labeled counterpart in LNCaP xenografts in dual isotope mode. PSMA-negative xenografts (PC3) were used as a negative control. Radioiodinated capromab bound to PSMA specifically. Biodistribution of 125I/111In-capromab showed a more rapid clearance of iodine radioactivity from liver, spleen, kidneys, bones, colon tissue, as well as tumors. Maximum tumor uptake (13±8% ID/g for iodine and 29±9% ID/g for indium) and tumor-to-non-tumor ratios for both agents were measured 5 days post-injection (pi). High tumor accumulation and low uptake of radioactivity in normal organs were confirmed using microPET/CT 5 days pi of 124I-capromab.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacokinetics , Iodine Radioisotopes/chemistry , Iodine Radioisotopes/pharmacokinetics , Lymphatic Metastasis/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Animals , Antigens, Surface/metabolism , Cell Line, Tumor , Glutamate Carboxypeptidase II/metabolism , Humans , Isotope Labeling , Lymphatic Metastasis/pathology , Male , Mice , Neoplasm Staging/methods , Neoplasms, Experimental , Positron-Emission Tomography , Prostatic Neoplasms/pathology , Prostatic Neoplasms/secondary , Tissue Distribution
2.
Bioconjug Chem ; 24(7): 1144-53, 2013 Jul 17.
Article in English | MEDLINE | ID: mdl-23763444

ABSTRACT

The gastrin-releasing peptide receptor (GRPR/BB2) is a molecular target for the visualization of prostate cancer. This work focused on the development of high-affinity, hydrophilic, antagonistic, bombesin-based imaging agents for PET and SPECT. The bombesin antagonist analog d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 ([d-Phe(6),Sta(13),Leu(14)]bombesin[6-14]) was synthesized and conjugated to 1,4,7-triazacyclononane-N,N',N″-triacetic acid (NOTA) via a diethylene glycol (PEG2) linker. The resulting conjugate, NOTA-PEG2-[d-Phe(6),Sta(13),Leu(14)]bombesin[6-14] (NOTA-P2-RM26), was labeled with (68)Ga (T1/2 = 68 min, positron emitter) and (111)In (T1/2 = 2.8 days, gamma emitter). The labeling stability, specificity, inhibition efficiency (IC50), and dissociation constant (KD) of both labeled compounds as well as their cellular retention and internalization were investigated. The pharmacokinetics of the dual isotope ((111)In/(68)Ga)-labeled peptide in both normal NMRI mice and PC-3 tumor-bearing Balb/c nu/nu mice was also studied. NOTA-P2-RM26 was labeled with (111)In and (68)Ga at a radiochemical yield of >98%. Both conjugates were shown to have high specificity and binding affinity for GRPR. The KD value was determined to be 23 ± 13 pM for the (111)In-labeled compound in a saturation binding experiment. In addition, (nat)In- and (nat)Ga-NOTA-P2-RM26 showed low nanomolar binding inhibition concentrations (IC50 = 1.24 ± 0.29 nM and 0.91 ± 0.19 nM, respectively) in a competitive binding assay. The internalization rate of the radiolabeled conjugates was slow. The radiometal-labeled tracers demonstrated rapid blood clearance via the kidney and GRPR-specific uptake in the pancreas in normal mice. Tumor targeting and biodistribution studies in mice bearing PC-3 xenografts displayed high and specific uptake in tumors (8.1 ± 0.4%ID/g for (68)Ga and 5.7 ± 0.3%ID/g for (111)In) and high tumor-to-background ratios (tumor/blood: 12 ± 1 for (68)Ga and 10 ± 1 for (111)In) after only 1 h p.i. of 45 pmol of peptide. The xenografts were visualized by gamma and microPET cameras shortly after injection. In conclusion, the antagonistic bombesin analog NOTA-PEG2-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 (NOTA-P2-RM26) is a promisindg candidate for prostate cancer imaging using PET and SPECT/CT.


Subject(s)
Bombesin/antagonists & inhibitors , Heterocyclic Compounds/chemistry , Neoplasms, Experimental/metabolism , Receptors, Bombesin/drug effects , Animals , Heterocyclic Compounds, 1-Ring , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Experimental/pathology
3.
J Med Chem ; 56(12): 4966-74, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23692562

ABSTRACT

Engineered affibody molecules can be used for high contrast in vivo molecular imaging. Extending a recombinantly produced HER2 binding affibody molecule with a hexa-histidine tag allows for convenient purification by immobilized metal-ion affinity chromatography and labeling with [(99m)Tc(CO)3](+) but increases radioactivity uptake in the liver. To investigate the impact of charge, lipophilicity, and position on biodistribution, 10 variants of a histidine-based tag was attached to a HER2 binding affibody molecule. The biochemical properties and the HER2 binding affinity appeared to be similar for all variants. In vivo, positive charge promoted liver uptake. For N-terminally placed tags, lipophilicity promoted liver uptake and decreased kidney uptake. Kidney uptake was higher for C-terminally placed tags compared to their N-terminal counterparts. The variant with the amino acid composition HEHEHE placed in the N-terminus gave the lowest nonspecific uptake.


Subject(s)
Histidine , Organotechnetium Compounds/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacokinetics , Animals , Cell Line, Tumor , Drug Stability , Female , Humans , Hydrophobic and Hydrophilic Interactions , Isotope Labeling , Kinetics , Mice , Receptor, ErbB-2/metabolism , Recombinant Fusion Proteins/metabolism , Tissue Distribution
4.
Nucl Med Biol ; 40(3): 378-86, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23357083

ABSTRACT

INTRODUCTION: Affibody molecules, small scaffold proteins, have demonstrated an appreciable potential as imaging probes. Affibody molecules are composed of three alpha-helices. Helices 1 and 2 are involved in molecular recognition, while helix 3 provides stability. The size of Affibody molecules can be reduced by omitting the third alpha-helix and cross-linking the two remaining, providing a smaller molecule with better extravasation and quicker clearance of unbound tracer. The goal of this study was to develop a novel 2-helix Affibody molecule based on backbone cyclization by native chemical ligation (NCL). METHODS: The HER2-targeting NCL-cyclized Affibody molecule ZHER2:342min has been designed, synthesized and site-specifically conjugated with a DOTA chelator. DOTA-ZHER2:342min was labeled with (111)In and (68)Ga. The binding affinity of DOTA-ZHER2:342min was evaluated in vitro. The targeting properties of (111)In- and (68)Ga-DOTA-ZHER2:342min were evaluated in mice bearing SKOV-3 xenografts and compared with the properties of (111)In- and (68)Ga-labeled PEP09239, a DOTA-conjugated 2-helix Affibody analogue cyclized by a homocysteine disulfide bridge. RESULTS: The dissociation constant (KD) for DOTA-ZHER2:342min binding to HER2 was 18nM according to SPR measurements. DOTA-ZHER2:342min was labeled with (111)In and (68)Ga. Both conjugates demonstrated bi-phasic binding kinetics to HER2-expressing cells, with KD1 in low nanomolar range. Both variants demonstrated specific uptake in HER2-expressing xenografts. Tumor-to-blood ratios at 2h p.i. were 6.1±1.3 for (111)In- DOTA-ZHER2:342min and 4.6±0.7 for (68)Ga-DOTA-ZHER2:342min. However, the uptake of DOTA-ZHER2:342min in lung, liver and spleen was appreciably higher than the uptake of PEP09239-based counterparts. CONCLUSIONS: Native chemical ligation enables production of a backbone-cyclized HER2-binding 2-helix Affibody molecule (ZHER2:342min) with low nanomolar target affinity and specific tumor uptake.


Subject(s)
Molecular Imaging , Receptor, ErbB-2/metabolism , Recombinant Fusion Proteins/metabolism , Animals , Cell Line, Tumor , Cyclization , Gallium Radioisotopes , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Indium Radioisotopes , Mice , Protein Stability , Protein Structure, Secondary , Recombinant Fusion Proteins/chemistry , Substrate Specificity , Temperature
5.
Eur J Nucl Med Mol Imaging ; 39(3): 481-92, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22322933

ABSTRACT

PURPOSE: In disseminated prostate cancer, expression of human epidermal growth factor receptor type 2 (HER2) is one of the pathways to androgen independence. Radionuclide molecular imaging of HER2 expression in disseminated prostate cancer might identify patients for HER2-targeted therapy. Affibody molecules are small (7 kDa) targeting proteins with high potential as tracers for radionuclide imaging. The goal of this study was to develop an optimal Affibody-based tracer for visualization of HER2 expression in prostate cancer. METHODS: A synthetic variant of the anti-HER2 Z(HER2:342) Affibody molecule, Z(HER2:S1), was N-terminally conjugated with the chelators DOTA, NOTA and NODAGA. The conjugated proteins were biophysically characterized by electrospray ionization mass spectroscopy (ESI-MS), circular dichroism (CD) spectroscopy and surface plasmon resonance (SPR)-based biosensor analysis. After labelling with (111)In, the biodistribution was assessed in normal mice and the two most promising conjugates were further evaluated for tumour targeting in mice bearing DU-145 prostate cancer xenografts. RESULTS: The HER2-binding equilibrium dissociation constants were 130, 140 and 90 pM for DOTA-Z(HER2:S1), NOTA-Z(HER2:S1) and NODAGA-Z(HER2:S1), respectively. A comparative study of (111)In-labelled DOTA-Z(HER2:S1), NOTA-Z(HER2:S1) and NODAGA-Z(HER2:S1) in normal mice demonstrated a substantial influence of the chelators on the biodistribution properties of the conjugates. (111)In-NODAGA-Z(HER2:S1) had the most rapid clearance from blood and healthy tissues. (111)In-NOTA-Z(HER2:S1) showed high hepatic uptake and was excluded from further evaluation. (111)In-DOTA-Z(HER2:S1) and (111)In-NODAGA-Z(HER2:S1) demonstrated specific uptake in DU-145 prostate cancer xenografts in nude mice. The tumour uptake of (111)In-NODAGA-Z(HER2:S1), 5.6 ± 0.4%ID/g, was significantly lower than the uptake of (111)In-DOTA-Z(HER2:S1), 7.4 ± 0.5%ID/g, presumably because of lower bioavailability due to more rapid clearance. (111)In-NODAGA-Z(HER2:S1) provided higher tumour-to-blood ratio, but somewhat lower tumour-to-liver, tumour-to-spleen and tumour-to-bone ratios. CONCLUSION: Since distant prostate cancer metastases are situated in bone or bone marrow, the higher tumour-to-bone ratio is the most important. This renders (111)In-DOTA-Z(HER2:S1) a preferable agent for imaging of HER2 expression in disseminated prostate cancer.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Cell Transformation, Neoplastic , Chelating Agents/chemistry , Indium Radioisotopes/chemistry , Prostatic Neoplasms/pathology , Receptor, ErbB-2/immunology , Acetates/chemistry , Amino Acid Sequence , Animals , Antibodies, Monoclonal/pharmacokinetics , Binding Sites , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Heterocyclic Compounds/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Isotope Labeling , Male , Mice , Molecular Imaging , Molecular Sequence Data , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Substrate Specificity
6.
Eur J Nucl Med Mol Imaging ; 39(4): 693-702, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22170322

ABSTRACT

PURPOSE: Radiolabelled Affibody molecules have demonstrated a potential for visualization of tumour-associated molecular targets. Affibody molecules (7 kDa) are composed of three alpha-helices. Recently, a smaller two-helix variant of Affibody molecules (5.1 kDa) was developed. The aim of this study was to compare two- and three-helix HER2-targeting Affibody molecules directly in vivo. METHODS: The three-helix Affibody molecule ABY-002 and the two-helix Affibody molecule PEP09239 were labelled with (111)In at the N-termini via DOTA chelator. Tumour-targeting properties were directly compared at 1 and 4 h after injection in mice bearing SKOV-3 xenografts with high HER2 expression and LS174T xenografts with low HER2 expression. RESULTS: The dissociation constants (K(D)) for HER2 binding were 78 pM for the three-helix Affibody molecule and 2.1 nM for the two-helix Affibody molecule. (111)In-PEP09239 cleared more rapidly from the blood. In xenografts with high HER2 expression, the uptake of (111)In-ABY-002 was significantly higher than that of (111)In-PEP09239. The tumour-to-blood ratio was higher for (111)In-PEP09239 at 4 h after injection, while there was no significant difference in other tumour-to-organ ratios. The tumour uptake of (111)In-ABY-002 was eightfold higher than that of (111)In-PEP09239 in xenografts with low expression. Tumour-to-blood ratios were equal in this case, but other tumour-to-organ ratios were appreciably higher for the three-helix variant. CONCLUSION: For tumours with high HER2 expression, two-helix HER2-targeting Affibody molecules can provide higher tumour-to-blood ratio at the cost of lower tumour uptake. In the case of low expression, both tumour uptake and tumour-to-organ ratios are appreciably higher for three-helix than for two-helix HER2-targeting Affibody molecules.


Subject(s)
Indium Radioisotopes , Molecular Imaging/methods , Recombinant Fusion Proteins/chemistry , Amino Acid Sequence , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Female , Humans , Isotope Labeling , Mice , Molecular Sequence Data , Protein Structure, Secondary , Receptor, ErbB-2/metabolism , Recombinant Fusion Proteins/chemical synthesis , Recombinant Fusion Proteins/pharmacokinetics
7.
Int J Oncol ; 40(5): 1677-82, 2012 May.
Article in English | MEDLINE | ID: mdl-22200885

ABSTRACT

Cell lines are common model systems in the development of therapeutic proteins and in the research on cellular functions and dysfunctions. In this field, the protein interaction assay is a frequently used tool for assessing the adequacy of a protein for diagnostic and therapeutic purposes. In this study, we investigated the extent to which the interaction characteristics depend on the choice of cell line for HER-family receptors. The interaction characteristics of two therapeutic antibodies (trastuzumab and cetuximab) and one Affibody molecule (ZHER2:342), interacting with the intended receptor were characterized with high precision using an automated real-time interaction method, in different cell lines (HaCaT, A431, HEP-G2, SKOV3, PC3, DU-145). Clear differences in binding affinity and kinetics, up to one order of magnitude, were found for the interaction of the same protein binding to the same receptor on different cells for all three proteins. For HER-family receptors, it is therefore important to refer to the measured affinity for a protein-receptor interaction together with the hosting cell line. The ability to accurately measure affinity and kinetics of a protein-receptor interaction on cell lines of different origins may increase the understanding of underlying receptor biology, and impact the selection of candidates in the development of therapeutic or diagnostic agents.


Subject(s)
Antibodies, Monoclonal, Humanized/metabolism , Antibodies, Monoclonal/metabolism , ErbB Receptors/metabolism , Protein Interaction Mapping , Receptor, ErbB-2/metabolism , Recombinant Fusion Proteins/metabolism , Antibody Affinity , Cetuximab , Hep G2 Cells , Humans , Iodine Radioisotopes , Kinetics , Protein Binding , Protein Interaction Domains and Motifs , Radioligand Assay , Trastuzumab
8.
J Nucl Med ; 53(1): 90-7, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22173843

ABSTRACT

UNLABELLED: One of the pathways leading to androgen independence in prostate cancer involves upregulation of insulinlike growth factor type 1 receptor (IGF-1R). Radionuclide imaging of IGF-1R in tumors might be used for selection of patients who would most likely benefit from IGF-1R-targeted therapy. The goal of this study was to evaluate the feasibility of in vivo radionuclide imaging of IGF-1R expression in prostate cancer xenografts using a small nonimmunoglobulin-derived binding protein called an Affibody molecule. METHODS: The IGF-1R-binding Z(IGF1R:4551) Affibody molecule was site-specifically conjugated with a maleimido derivative of DOTA and labeled with (111)In. The binding of radiolabeled Z(IGF1R:4551) to IGF-1R-expressing cells was evaluated in vitro and in vivo. RESULTS: DOTA-Z(IGF1R:4551) can be stably labeled with (111)In with preserved specific binding to IGF-1R-expressing cells in vitro. In mice, (111)In-DOTA-Z(IGF1R:4551) accumulated in IGF-1R-expressing organs (pancreas, stomach, lung, and salivary gland). Receptor saturation experiments demonstrated that targeting of DU-145 prostate cancer xenografts in NMRI nu/nu mice was IGF-1R-specific. The tumor uptake was 1.1 ± 0.3 percentage injected dose per gram, and the tumor-to-blood ratio was 3.2 ± 0.2 at 8 h after injection. CONCLUSION: This study demonstrates the feasibility of in vivo targeting of IGF-1R-expressing prostate cancer xenografts using an Affibody molecule. Further development of radiolabeled Affibody molecules might provide a useful clinical tool for stratification of patients with prostate cancer for IGF-1R-targeting therapy.


Subject(s)
Cell Transformation, Neoplastic , Heterocyclic Compounds, 1-Ring/chemistry , Indium Radioisotopes , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Receptor, IGF Type 1/metabolism , Recombinant Fusion Proteins , Animals , Cell Line, Tumor , Feasibility Studies , Humans , Male , Mice , Prostatic Neoplasms/metabolism , Radionuclide Imaging , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacokinetics
9.
Nucl Med Biol ; 38(8): 1093-102, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22137850

ABSTRACT

INTRODUCTION: Human epidermal growth factor receptor type 2 (HER2) overexpression supports proliferation of androgen-independent prostate cancer (PC). Radionuclide molecular imaging of HER2 expression in disseminated PC would aid in the selection of patients who are likely responders to HER2 targeting therapy. In this study, we evaluated whether ABY-025 Affibody molecule, a small (∼ 7-kDa) HER2-binding scaffold protein, produces superior tumor-to-nontumor ratios compared with those obtained through the use of radiolabeled humanized anti-HER2 antibody, trastuzumab. The influence of (111)In vs. (125)I radiolabel was evaluated for both tracers. METHODS: ABY-025 was labeled with (111)In using 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid chelator, site-specifically coupled to the C-terminus via the maleimido derivative. Trastuzumab was labeled with (111)In using a CHX-A″ diethylene triamine pentaacetic acid (DTPA) chelator. An indirect radioiodination with [(125)I]-N-succinimidyl-para-iodobenzoate was used for both targeting proteins. Biodistribution of all labeled targeting proteins was evaluated in mice bearing DU-145 PC xenografts. RESULTS: The use of residualizing (111)In-label facilitated better tumor uptake and better tumor-to-nontumor ratios for both targeting agents. [(111)In]-ABY-025 provided tumor uptake of 7.1±0.8% injected dose per gram of tissue (% ID/g) and tumor-to-blood ratio of 47±13 already at 6 h postinjection. The maximum tumor-to-nontumor ratios with [(111)In]-CHX-DTPA-trastuzumab were achieved at 72 h postinjection, whereas tumor uptake was 11±4% ID/g and tumor-to-blood ratio was 18±7. The biodistribution data were confirmed with gamma-camera imaging. CONCLUSIONS: Radiolabeled ABY-025 Affibody molecule provides higher contrast in imaging of HER2-expressing PC xenografts than radiolabeled trastuzumab. Residualizing radiometal label for ABY-025 provides better contrast in imaging of HER2-expressing PC xenografts than nonresidualizing radiohalogen.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacokinetics , Indium Radioisotopes/pharmacokinetics , Iodine Radioisotopes/pharmacokinetics , Peptide Fragments/pharmacokinetics , Prostatic Neoplasms/diagnostic imaging , Receptor, ErbB-2/metabolism , Animals , Male , Mice , Mice, Inbred BALB C , Radionuclide Imaging , Radiopharmaceuticals/chemical synthesis , Staphylococcal Protein A , Tissue Distribution , Trastuzumab
10.
J Nucl Med ; 52(3): 461-9, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21321280

ABSTRACT

UNLABELLED: Affibody molecules are a recently developed class of targeting proteins based on a nonimmunoglobulin scaffold. The small size (7 kDa) and subnanomolar affinity of Affibody molecules enables high-contrast imaging of tumor-associated molecular targets, particularly human epidermal growth factor receptor type 2 (HER2). (99m)Tc as a label offers advantages in clinical practice, and earlier studies demonstrated that (99m)Tc-labeled recombinant Affibody molecules with a C-terminal cysteine could be used for HER2 imaging. However, the renal retention of radioactivity exceeded tumor uptake, which might complicate imaging of metastases in the lumbar region. The aim of this study was to develop an agent with low renal uptake and preserved tumor targeting. METHODS: A series of recombinant derivatives of the HER2-binding Z(HER2)(:342) Affibody molecule with a C-terminal chelating sequence, -GXXC (X denoting glycine, serine, lysine, or glutamate), was designed. The constructs were labeled with (99m)Tc and evaluated in vitro and in vivo. RESULTS: All variants were stably labeled with (99m)Tc, with preserved capacity to bind specifically to HER2-expressing cells in vitro and in vivo. The composition of the chelating sequence had a clear influence on the cellular processing and biodistribution properties of the Affibody molecules. The best variant, (99m)Tc-Z(HER2)(:V2), with the C-terminal chelating sequence -GGGC, provided the lowest radioactivity retention in all normal organs and tissues including the kidneys. (99m)Tc-Z(HER2)(:V2) displayed high uptake of radioactivity in HER2-expressing xenografts, 22.6 ± 4.0 and 7.7 ± 1.5 percentage injected activity per gram of tissue at 4 h after injection in SKOV-3 (high HER2 expression) and DU-145 (low HER2 expression) tumors, respectively. In both models, the tumor uptake exceeded the renal uptake. CONCLUSION: These results demonstrate that the biodistribution properties of recombinant (99m)Tc-labeled Affibody molecules can be optimized by modification of the C-terminal cysteine-containing chelating sequence. (99m)Tc-Z(HER2)(:V2) is a promising candidate for further development as a diagnostic radiopharmaceutical for imaging of HER2-expressing tumors. These results may be useful for the development of imaging agents based on other Affibody molecules and, hopefully, other scaffolds.


Subject(s)
Molecular Imaging/methods , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/metabolism , Recombinant Fusion Proteins/pharmacokinetics , Technetium/pharmacokinetics , Animals , Drug Design , Image Enhancement/methods , Isotope Labeling/methods , Metabolic Clearance Rate , Mice , Organ Specificity , Radionuclide Imaging , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution
11.
Int J Oncol ; 38(4): 1137-43, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21253675

ABSTRACT

Expression of receptor tyrosine-kinase (RTK) EGFR is low in normal prostate, but increases in prostate cancer. This receptor is significantly up-regulated as tumors progress into higher grade, androgen-insensitive and metastatic lesions. The up-regulated receptors could serve as targets for novel selective anti-cancer drugs, e.g. antibodies and tyrosine kinase inhibitors. Radionuclide imaging of RTK can facilitate patient stratification and monitoring of anti-RTK therapy of prostate cancer. The goal of the study was to evaluate binding and cellar processing of radiolabeled EGFR-targeting conjugates by prostate cancer cell lines. Receptor expression of EGFR was studied in three prostate cancer cell lines: DU145 (brain metastasis of PC, hormone insensitive), PC3 (bone metastasis of PC) and LNCaP (lymph node metastasis of PC, androgen and estrogen receptor positive). Uptake and internalization of anti-EGFR mAbs (cetuximab) and affibody molecule (Z2377) labeled with indium-111 was investigated. EGFR expression on prostate cancer cell lines was clearly demonstrated. Both labelled conjugates 111In-Z2377 and 111In-cetuximab bound to prostate cancer cells in the receptor mediated model. Expression levels were modest but correlate with degree of hormone independence. Internalization of Affibody molecules was relatively slow in all cell lines. Internalization of mAbs was more rapid. The level of EGFR expression in these cell lines is sufficient for in vivo molecular imaging. Slow internalization indicates possibility of the use of non-residualizing labels for affibody molecules.


Subject(s)
Antibodies, Monoclonal/metabolism , Antineoplastic Agents/metabolism , ErbB Receptors/metabolism , Prostatic Neoplasms/diagnostic imaging , Radiopharmaceuticals/metabolism , Recombinant Fusion Proteins/metabolism , Antibodies, Monoclonal, Humanized , Cell Line, Tumor , Cetuximab , ErbB Receptors/antagonists & inhibitors , Humans , Indium Radioisotopes , Male , Neoplasm Metastasis , Prostatic Neoplasms/pathology , Radionuclide Imaging
12.
Exp Ther Med ; 2(3): 523-528, 2011 May.
Article in English | MEDLINE | ID: mdl-22977535

ABSTRACT

The treatment of disseminated prostate cancer remains a great challenge in current oncology practice. The proliferation of prostate cancer cells is testosterone-driven, but clonal selection during androgen deprivation therapy promotes the development of androgen-independent (hormone-refractory) cells, which become phenotypically dominant. Human epidermal growth factor receptor type 2 (HER2) is capable of activating the androgen receptor pathway, even in the absence of the ligand. The detection of phenotypic changes associated with the development of androgen independence may influence patient management, suggesting the initiation of a second-line therapy. This study aimed to establish the level of HER2 expression in a number of prostate cancer cell lines (LNCaP, PC3 and DU145) in order that they be used as models in further studies, and to evaluate the binding and cellular processing of [(111)In]-labeled trastuzumab and the anti-HER2 synthetic Affibody molecule ABY-025 in these cell lines. The expression of HER2 was demonstrated and quantified in all three tested prostate cancer cell-lines. Studies on cellular processing demonstrated that internalization of both conjugates increased continuously during the whole incubation. The internalization rate was approximately equal for both monoclonal antibodies and Affibody molecules. In both cases, internalization was moderately rapid. Such features would definitely favor the use of radiometal labels for trastuzumab and, most likely, for affibody molecules. The level of HER2 expression in these cell lines is sufficient for in vivo molecular imaging.

13.
Bioconjug Chem ; 21(11): 2013-22, 2010 Nov 17.
Article in English | MEDLINE | ID: mdl-20964447

ABSTRACT

Affibody molecules are a class of small (ca. 7 kDa) robust scaffold proteins suitable for radionuclide molecular imaging of therapeutic targets in vivo. A hexahistidine tag at the N-terminus streamlines development of new imaging probes by enabling facile purification using immobilized metal ion affinity chromatography (IMAC), as well as convenient [99(m)Tc(CO)3](+)-labeling. However, previous studies in mice have demonstrated that Affibody molecules labeled by this method yield higher liver accumulation of radioactivity, compared to the same tracer lacking the hexahistidine tag and labeled by an alternative method. Two variants of the HER2-binding Affibody molecule Z(HER)2(:)342 were made in an attempt to create a tagged tracer that could be purified by immobilized metal affinity chromatography, yet would not result in anomalous hepatic radioactivity accumulation following labeling with [99(m)Tc(CO)3](+). In one construct, the hexahistidine tag was moved to the C-terminus. In the other construct, every second histidine residue in the hexahistidine tag was replaced by the more hydrophilic glutamate, resulting in a HEHEHE-tag. Both variants, denoted Z(HER)2(:)342-H6 and (HE)3-Z(HER)2(:)342, respectively, could be efficiently purified using IMAC and stably labeled with [99(m)Tc(CO)3](+) and were subsequently compared with the parental H6-Z(HER)2(:)342 having an N-terminal hexahistidine tag. All three variants were demonstrated to specifically bind to HER2-expressing cells in vitro. The hepatic accumulation of radioactivity in a murine model was 2-fold lower with [99(m)Tc(CO)3](+)-Z(HER2:342)-H6 compared to [99(m)Tc(CO)3](+)-H6-Z(HER)2(:)342, and more than 10-fold lower with [99(m)Tc(CO)3](+)-(HE)3-Z(HER)2(:)342. These differences translated into appreciably superior tumor-to-liver ratio for [99(m)Tc(CO)3](+)-(HE)3-Z(HER)2(:)342 compared to the alternative conjugates. This information might be useful for development of other scaffold-based molecular imaging probes.


Subject(s)
Histidine/chemistry , Liver/metabolism , Oligopeptides/chemistry , Organotechnetium Compounds/chemistry , Organotechnetium Compounds/metabolism , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Animals , Cell Line, Tumor , Chromatography, Affinity , Humans , Isotope Labeling , Male , Mice , Mice, Inbred Strains , Organotechnetium Compounds/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/pharmacokinetics , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...