Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Nucl Med Mol Imaging ; 51(6): 1662-1674, 2024 May.
Article in English | MEDLINE | ID: mdl-38228971

ABSTRACT

PURPOSE: [18F]MK-6240, a second-generation tau PET tracer, is increasingly used for the detection and the quantification of in vivo cerebral tauopathy in Alzheimer's disease (AD). Given that neurological symptoms are better explained by the topography rather than by the nature of brain lesions, our study aimed to evaluate whether cognitive impairment would be more closely associated with the spatial extent than with the intensity of tau-PET signal, as measured by the standard uptake value ratio (SUVr). METHODS: [18F]MK6240 tau-PET data from 82 participants in the AD spectrum were quantified in three different brain regions (Braak ≤ 2, Braak ≤ 4, and Braak ≤ 6) using SUVr and the extent of tauopathy (EOT, percentage of voxels with SUVr ≥ 1.3). PET data were first compared between diagnostic categories, and ROC curves were computed to evaluate sensitivity and specificity. PET data were then correlated to cognitive performances and cerebrospinal fluid (CSF) tau values. RESULTS: The EOT in the Braak ≤ 2 region provided the highest diagnostic accuracies, distinguishing between amyloid-negative and positive clinically unimpaired individuals (threshold = 9%, sensitivity = 79%, specificity = 82%) as well as between prodromal AD and preclinical AD (threshold = 38%, sensitivity = 81%, specificity = 93%). The EOT better correlated with cognition than SUVr (∆R2 + 0.08-0.09) with the best correlation observed for EOT in the Braak ≤ 4 region (R2 = 0.64). Cognitive performances were more closely associated with PET metrics than with CSF values. CONCLUSIONS: Quantifying [18F]MK-6240 tau PET in terms of EOT rather than SUVr significantly increases the correlation with cognitive performances. Quantification in the mesiotemporal lobe is the most useful to diagnose preclinical AD or prodromal AD.


Subject(s)
Alzheimer Disease , Cognition , Isoquinolines , Positron-Emission Tomography , Humans , Alzheimer Disease/diagnostic imaging , Male , Female , Aged , tau Proteins/metabolism , Aged, 80 and over , Middle Aged , Tauopathies/diagnostic imaging , Brain/diagnostic imaging , Brain/metabolism , Biological Transport , Radiopharmaceuticals/pharmacokinetics
2.
J Alzheimers Dis ; 97(1): 421-433, 2024.
Article in English | MEDLINE | ID: mdl-38108350

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) pathology can be disclosed in vivo using amyloid and tau imaging, unlike non-AD neuropathologies for which no specific markers exist. OBJECTIVE: We aimed to compare brain hypometabolism and tauopathy to unveil non-AD pathologies. METHODS: Sixty-one patients presenting cognitive complaints (age 48-90), including 32 with positive AD biomarkers (52%), performed [18F]-Fluorodeoxyglucose (FDG)-PET (brain metabolism) and [18F]-MK-6240-PET (tau). We normalized these images using data from clinically normal individuals (n = 30), resulting in comparable FDG and tau z-scores. We computed between-patients correlations to evaluate regional associations. For each patient, a predominant biomarker (i.e., Hypometabolism > Tauopathy or Hypometabolism≤Tauopathy) was determined in the temporal and frontoparietal lobes. We computed within-patient correlations between tau and metabolism and investigated their associations with demographics, cognition, cardiovascular risk factors (CVRF), CSF biomarkers, and white matter hypointensities (WMH). RESULTS: We observed negative associations between tau and FDG in 37 of the 68 cortical regions-of-interest (average Pearson's r = -0.25), mainly in the temporal lobe. Thirteen patients (21%) had Hypometabolism > Tauopathy whereas twenty-five patients (41%) had Hypometabolism≤Tauopathy. Tau-predominant patients were more frequently females and had greater amyloid burden. Twenty-three patients (38%) had Hypometabolism≤Tauopathy in the temporal lobe, but Hypometabolism > Tauopathy in the frontoparietal lobe. This group was older and had higher CVRF than Tau-predominant patients. Patients with more negative associations between tau and metabolism were younger, had worse cognition, and greater amyloid and WMH burdens. CONCLUSIONS: Tau-FDG comparison can help suspect non-AD pathologies in patients presenting cognitive complaints. Stronger Tau-FDG correlations are associated with younger age, worse cognition, and greater amyloid and WMH burdens.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Tauopathies , Aged , Aged, 80 and over , Female , Humans , Alzheimer Disease/metabolism , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Biomarkers/metabolism , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/psychology , Fluorodeoxyglucose F18/metabolism , Positron-Emission Tomography/methods , tau Proteins/metabolism , Tauopathies/diagnostic imaging , Tauopathies/metabolism , Male , Middle Aged
3.
Brain Connect ; 13(5): 287-296, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36103377

ABSTRACT

Background/Purpose: Brain function changes with Alzheimer's disease (AD) progression. Evaluating those changes longitudinally is important to understand the complex relationships between brain pathologies and cognition. We aimed (1) to identify longitudinal changes in functional connectivity in patients with mild cognitive impairment (MCI) characterized for amyloid-ß (Aß) status and (2) to relate these functional changes to clinical progression. Methods: Forty-four patients with MCI were followed using serial functional magnetic resonance imaging (fMRI) over 1.2 years (three sessions) and cognitive testing over 3.1 years (five sessions). Intra and inter-network connectivities were computed to assess changes in brain connectivity using a network atlas adapted for late adulthood. Sixteen low-Aß clinically normal older adults underwent a single fMRI session for group comparisons at baseline. Linear mixed-effects models with random intercept and slope were used to predict changes in connectivity based on Aß status and progression to dementia. Results: At baseline, intra and inter-network resting-state fMRI connectivities did not differ by baseline clinical diagnosis, Aß status, or clinical progression to dementia. At the final imaging session, progressive MCI had significantly higher connectivity compared with stable MCI, specifically within the default-mode network (DMN). Longitudinally, progressive MCI had increasing intra-DMN connectivity over time compared with stable MCI, and the rate of changes in connectivity was significantly associated with the rate of cognitive decline. Conclusions: Intra-DMN connectivity increases in MCI patients progressing toward dementia, suggesting aberrant synchronization in the symptomatic stages of AD. Impact statement Changes in functional connectivity occur in the course of Alzheimer's disease. We observed a progressive increase over time in resting-state functional connectivity within the default-mode network in patients with mild cognitive impairment who progressed to dementia. The rate of connectivity increase was significantly associated with the rate of cognitive decline. The observation of increased functional connectivity during the progression to dementia, and not only in the pre-clinical stage, is interpreted as an aberrant synchronization rather than a compensation mechanism.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Adult , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Brain , Magnetic Resonance Imaging , Default Mode Network , Nerve Net , Disease Progression
4.
PLoS One ; 16(2): e0247448, 2021.
Article in English | MEDLINE | ID: mdl-33635892

ABSTRACT

Blind individuals often report difficulties to navigate and to detect objects placed outside their peri-personal space. Although classical sensory substitution devices could be helpful in this respect, these devices often give a complex signal which requires intensive training to analyze. New devices that provide a less complex output signal are therefore needed. Here, we evaluate a smartphone-based sensory substitution device that offers navigation guidance based on strictly spatial cues in the form of horizontally spatialized sounds. The system uses multiple sensors to either detect obstacles at a distance directly in front of the user or to create a 3D map of the environment (detection and avoidance mode, respectively), and informs the user with auditory feedback. We tested 12 early blind, 11 late blind and 24 blindfolded-sighted participants for their ability to detect obstacles and to navigate in an obstacle course. The three groups did not differ in the number of objects detected and avoided. However, early blind and late blind participants were faster than their sighted counterparts to navigate through the obstacle course. These results are consistent with previous research on sensory substitution showing that vision can be replaced by other senses to improve performance in a wide variety of tasks in blind individuals. This study offers new evidence that sensory substitution devices based on horizontally spatialized sounds can be used as a navigation tool with a minimal amount of training.


Subject(s)
Blindness/psychology , Spatial Navigation/physiology , Adult , Age of Onset , Blindness/physiopathology , Female , Humans , Male , Middle Aged , Mobile Applications , Pilot Projects , Space Perception/physiology
5.
Eur J Nucl Med Mol Imaging ; 48(1): 302-310, 2021 01.
Article in English | MEDLINE | ID: mdl-32601802

ABSTRACT

PURPOSE: To evaluate cerebral amyloid-ß(Aß) pathology in older adults with cognitive complaints, visual assessment of PET images is approved as the routine method for image interpretation. In research studies however, Aß-PET semi-quantitative measures are associated with greater risk of progression to dementia; but until recently, these measures lacked standardization. Therefore, the Centiloid scale, providing standardized Aß-PET semi-quantitation, was recently validated. We aimed to determine the predictive values of visual assessments and Centiloids in non-demented patients, using long-term progression to dementia as our standard of truth. METHODS: One hundred sixty non-demented participants (age, 54-86) were enrolled in a monocentric [18F] flutemetamol Aß-PET study. Flutemetamol images were interpreted visually following the manufacturers recommendations. SUVr values were converted to the Centiloid scale using the GAAIN guidelines. Ninety-eight persons were followed until dementia diagnosis or were clinically stable for a median of 6 years (min = 4.0; max = 8.0). Twenty-five patients with short follow-up (median = 2.0 years; min = 0.8; max = 3.9) and 37 patients with no follow-up were excluded. We computed ROC curves predicting subsequent dementia using baseline PET data and calculated negative (NPV) and positive (PPV) predictive values. RESULTS: In the 98 participants with long follow-up, Centiloid = 26 provided the highest overall predictive value = 87% (NPV = 85%, PPV = 88%). Visual assessment corresponded to Centiloid = 40, which predicted dementia with an overall predictive value = 86% (NPV = 81%, PPV = 92%). Inclusion of the 25 patients who only had a 2-year follow-up decreased the PPV = 67% (NPV = 88%), reflecting the many positive cases that did not progress to dementia after short follow-ups. CONCLUSION: A Centiloid threshold = 26 optimally predicts progression to dementia 6 years after PET. Visual assessment provides similar predictive value, with higher specificity and lower sensitivity. TRIAL REGISTRATION: Eudra-CT number: 2011-001756-12.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia , Aged , Aged, 80 and over , Amyloid beta-Peptides/metabolism , Aniline Compounds , Benzothiazoles , Brain/metabolism , Cognitive Dysfunction/diagnostic imaging , Dementia/diagnostic imaging , Humans , Middle Aged , Positron-Emission Tomography
SELECTION OF CITATIONS
SEARCH DETAIL
...