Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Clin Proteomics ; 19(1): 2, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34996345

ABSTRACT

BACKGROUND: Early detection of small cell lung cancer (SCLC) crucially demands highly reliable markers. Growing evidence suggests that extracellular vesicles carry tumor cell-specific cargo suitable as protein markers in cancer. Quantitative proteomic profiling of circulating microvesicles and exosomes can be a high-throughput platform for discovery of novel molecular insights and putative markers. Hence, this study aimed to investigate proteome dynamics of plasma-derived microvesicles and exosomes in newly diagnosed SCLC patients to improve early detection. METHODS: Plasma-derived microvesicles and exosomes from 24 healthy controls and 24 SCLC patients were isolated from plasma by either high-speed- or ultracentrifugation. Proteins derived from these extracellular vesicles were quantified using label-free mass spectrometry and statistical analysis was carried out aiming at identifying significantly altered protein expressions between SCLC patients and healthy controls. Furthermore, significantly expressed proteins were subjected to functional enrichment analysis to identify biological pathways implicated in SCLC pathogenesis. RESULTS: Based on fold change (FC) ≥ 2 or ≤ 0.5 and AUC ≥ 0.70 (p < 0.05), we identified 10 common and 16 and 17 unique proteins for microvesicles and exosomes, respectively. Among these proteins, we found dysregulation of coagulation factor XIII A (Log2 FC = - 1.1, p = 0.0003, AUC = 0.82, 95% CI: 0.69-0.96) and complement factor H-related protein 4 (Log2 FC = 1.2, p = 0.0005, AUC = 0.82, 95% CI; 0.67-0.97) in SCLC patients compared to healthy individuals. Our data may indicate a novel tumor-suppressing role of blood coagulation and involvement of complement activation in SCLC pathogenesis. CONCLUSIONS: In comparing SCLC patients and healthy individuals, several differentially expressed proteins were identified. This is the first study showing that circulating extracellular vesicles may encompass specific proteins with potential diagnostic attributes for SCLC, thereby opening new opportunities as novel non-invasive markers.

2.
Metabol Open ; 12: 100125, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34622190

ABSTRACT

BACKGROUND: Alzheimer's Disease (AD) is a complex and multifactorial disease and novel approaches are needed to illuminate the underlying pathology. Metabolites comprise the end-product of genes, transcripts, and protein regulations and might reflect disease pathogenesis. Blood is a common biofluid used in metabolomics; however, since extracellular vesicles (EVs) hold cell-specific biological material and can cross the blood-brain barrier, their utilization as biological material warrants further investigation. We aimed to investigate blood- and EV-derived metabolites to add insigts to the pathological mechanisms of AD. METHODS: Blood samples were collected from 10 AD and 10 Mild Cognitive Impairment (MCI) patients, and 10 healthy controls. EVs were enriched from plasma using 100,000×g, 1 h, 4 °C with a wash. Metabolites from serum and EVs were measured using liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Multivariate and univariate analyses were employed to identify altered metabolites in cognitively impaired individuals. RESULTS: While no significant EV-derived metabolites were found differentiating patients from healthy individuals, six serum metabolites were found important; valine (p = 0.001, fold change, FC = 0.8), histidine (p = 0.001, FC = 0.9), allopurinol riboside (p = 0.002, FC = 0.2), inosine (p = 0.002, FC = 0.3), 4-pyridoxic acid (p = 0.006, FC = 1.6), and guanosine (p = 0.004, FC = 0.3). Pathway analysis revealed branched-chain amino acids, purine and histidine metabolisms to be downregulated, and vitamin B6 metabolism upregulated in patients compared to controls. CONCLUSION: Using a combination of LC-MS and NMR methodologies we identified several altered mechanisms possibly related to AD pathology. EVs require additional optimization prior to their possible utilization as a biological material for AD-related metabolomics studies.

3.
Metabol Open ; 12: 100127, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34585134

ABSTRACT

BACKGROUND: Small cell lung cancer (SCLC) is a malignant disease with poor prognosis. At the time of diagnosis most patients are already in a metastatic stage. Current diagnosis is based on imaging, histopathology, and immunohistochemistry, but no blood-based biomarkers have yet proven to be clinically successful for diagnosis and screening. The precise mechanisms of SCLC are not fully understood, however, several genetic mutations, protein and metabolic aberrations have been described. We aim at identifying metabolite alterations related to SCLC and to expand our knowledge relating to this aggressive cancer. METHODS: A total of 30 serum samples of patients with SCLC, collected at the time of diagnosis, and 25 samples of healthy controls were included in this study. The samples were analyzed with nuclear magnetic resonance spectroscopy. Multivariate, univariate and pathways analyses were performed. RESULTS: Several metabolites were identified to be altered in the pre-treatment serum samples of small-cell lung cancer patients compared to healthy individuals. Metabolites involved in tricarboxylic acid cycle (succinate: fold change (FC) = 2.4, p = 0.068), lipid metabolism (LDL triglyceride: FC = 1.3, p = 0.001; LDL-1 triglyceride: FC = 1.3, p = 0.012; LDL-2 triglyceride: FC = 1.4, p = 0.009; LDL-6 triglyceride: FC = 1.5, p < 0.001; LDL-4 cholesterol: FC = 0.5, p = 0.007; HDL-3 free cholesterol: FC = 0.7, p = 0.002; HDL-4 cholesterol FC = 0.8, p < 0.001; HDL-4 apolipoprotein-A1: FC = 0.8, p = 0.005; HDL-4 apolipoprotein-A2: FC ≥ 0.7, p ≤ 0.001), amino acids (glutamic acid: FC = 1.7, p < 0.001; glutamine: FC = 0.9, p = 0.007, leucine: FC = 0.8, p < 0.001; isoleucine: FC = 0.8, p = 0.016; valine: FC = 0.9, p = 0.032; lysine: FC = 0.8, p = 0.004; methionine: FC = 0.8, p < 0.001; tyrosine: FC = 0.7, p = 0.002; creatine: FC = 0.9, p = 0.030), and ketone body metabolism (3-hydroxybutyric acid FC = 2.5, p < 0.001; acetone FC = 1.6, p < 0.001), among other, were found deranged in SCLC. CONCLUSIONS: This study provides novel insight into the metabolic disturbances in pre-treatment SCLC patients, expanding our molecular understanding of this malignant disease.

4.
Sci Rep ; 11(1): 18518, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34531462

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia and without readily available clinical biomarkers. Blood-derived proteins are routinely used for diagnostics; however, comprehensive plasma profiling is challenging due to the dynamic range in protein concentrations. Extracellular vesicles (EVs) can cross the blood-brain barrier and may provide a source for AD biomarkers. We investigated plasma-derived EV proteins for AD biomarkers from 10 AD patients, 10 Mild Cognitive Impairment (MCI) patients, and 9 healthy controls (Con) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The ultracentrifuged EVs were washed and confirmed according to the MISEV2018 guidelines. Some AD patients presented with highly elevated FXIIIA1 (log2 FC: 4.6, p-value: 0.005) and FXIIIB (log2 FC: 4.9, p-value: 0.018). A panel of proteins was identified discriminating Con from AD (AUC: 0.91, CI: 0.67-1.00) with ORM2 (AUC: 1.00, CI: 1.00-1.00), RBP4 (AUC: 0.99, CI: 0.95-1.00), and HYDIN (AUC: 0.89, CI: 0.72-1.00) were found especially relevant for AD. This indicates that EVs provide an easily accessible matrix for possible AD biomarkers. Some of the MCI patients, with similar protein profiles as the AD group, progressed to AD within a 2-year timespan.


Subject(s)
Alzheimer Disease/metabolism , Cognitive Dysfunction/metabolism , Extracellular Vesicles/metabolism , Aged , Biomarkers/metabolism , Blood Coagulation/physiology , Female , Humans , Male , Middle Aged , Proteomics
5.
J Cell Mol Med ; 25(11): 5191-5201, 2021 06.
Article in English | MEDLINE | ID: mdl-33949122

ABSTRACT

Carbon monoxide (CO) is the leading cause of death by poisoning worldwide. The aim was to explore the effects of mild and severe poisoning on blood gas parameters and metabolites. Eleven pigs were exposed to CO intoxication and had blood collected before and during poisoning. Mild CO poisoning (carboxyhaemoglobin, COHb 35.2 ± 7.9%) was achieved at 32 ± 13 minutes, and severe poisoning (69.3 ± 10.2% COHb) at 64 ± 23 minutes from baseline (2.9 ± 0.5% COHb). Blood gas parameters and metabolites were measured on a blood gas analyser and nuclear magnetic resonance spectrometer, respectively. Unsupervised principal component, analysis of variance and Pearson's correlation tests were applied. A P-value ≤ .05 was considered statistically significant. Mild poisoning resulted in a 28.4% drop in oxyhaemoglobin (OHb) and 12-fold increase in COHb, while severe poisoning in a 65% drop in OHb and 24-fold increase in COHb. Among others, metabolites implicated in regulation of metabolic acidosis (lactate, P < .0001), energy balance (pyruvate, P < .0001; 3-hydroxybutyrc acid, P = .01), respiration (citrate, P = .007; succinate, P = .0003; fumarate, P < .0001), lipid metabolism (glycerol, P = .002; choline, P = .0002) and antioxidant-oxidant balance (glutathione, P = .03; hypoxanthine, P < .0001) were altered, especially during severe poisoning. Our study adds new insights into the deranged metabolism of CO poisoning and leads the way for further investigation.


Subject(s)
Carbon Monoxide Poisoning/diagnosis , Carbon Monoxide/analysis , Metabolome , Animals , Carbon Monoxide Poisoning/metabolism , Female , Swine
6.
Commun Biol ; 3(1): 768, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33318569

ABSTRACT

Wound healing is a high energy demanding process that needs a good coordination of the mitochondria with glycolysis in the characteristic highly hypoxic environment. In diabetes, hyperglycemia impairs the adaptive responses to hypoxia with profound negative effects on different cellular compartments of wound healing. miR-210 is a hypoxia-induced microRNA that regulates cellular metabolism and processes important for wound healing. Here, we show that hyperglycemia blunted the hypoxia-dependent induction of miR-210 both in vitro and in human and mouse diabetic wounds. The impaired regulation of miR-210 in diabetic wounds is pathogenic, since local miR-210 administration accelerated wound healing specifically in diabetic but not in non-diabetic mice. miR-210 reconstitution restores the metabolic balance in diabetic wounds by reducing oxygen consumption rate and ROS production and by activating glycolysis with positive consequences on cellular migration. In conclusion, miR-210 accelerates wound healing specifically in diabetes through improvement of the cellular metabolism.


Subject(s)
Energy Metabolism/genetics , Gene Expression Regulation , Hypoxia/genetics , MicroRNAs/genetics , Wound Healing/genetics , Animals , Blood Glucose , Cellular Reprogramming , Diabetes Mellitus, Experimental , Disease Models, Animal , Fibroblasts/metabolism , Hyperglycemia/genetics , Hyperglycemia/metabolism , Mice
7.
ERJ Open Res ; 6(4)2020 Oct.
Article in English | MEDLINE | ID: mdl-33123551

ABSTRACT

Exhaled breath condensate (EBC) is safely collected in mechanically ventilated (MV) patients, but there are no guidelines regarding humidification of inhaled air during EBC collection. We investigated the influence of active and passive air humidification on EBC volumes obtained from MV patients. We collected 29 EBC samples from 21 critically ill MV patients with one condition of active humidification and four different conditions of non-humidification; 19 samples from 19 surgical MV patients with passive humidification and two samples from artificial lungs MV with active humidification. The main outcome was the obtained EBC volume per 100 L exhaled air. When collected with different conditions of non-humidification, mean [95% CI] EBC volumes did not differ significantly (1.35 [1.23; 1.46] versus 1.16 [1.05; 1.28] versus 1.27 [1.13; 1.41] versus 1.17 [1.00; 1.33] mL/100 L, p=0.114). EBC volumes were higher with active humidification than with non-humidification (2.05 [1.91; 2.19] versus 1.25 [1.17; 1.32] mL/100 L, p<0.001). The volume difference between these corresponded to the EBC volume obtained from artificial lungs (0.81 [0.62; 0.99] versus 0.89 mL/100 L, p=0.287). EBC volumes were lower for surgical MV patients with passive humidification compared to critically ill MV patients with non-humidification (0.55 [0.47; 0.63] versus 1.25 [1.17; 1.32] mL/100 L, p<0.001). While active humidification increases EBC volumes, passive humidification decreases EBC volumes and possibly influences EBC composition by other mechanisms. We propose that EBC should be collected from MV patients without air humidification to improve reproducibility and comparability across studies, and that humidification conditions should always be reported.

8.
Sci Data ; 7(1): 198, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32581368

ABSTRACT

Cardiovascular disease is the leading cause of death worldwide and cardiac surgery is a key treatment. This study explores metabolite changes as a consequence of ischemia-reperfusion due to cardiac surgery with the use of cardiopulmonary bypass (CPB). To describe the ischemia-reperfusion injury, metabolite changes were monitored in fifty patients before and after CPB at multiple time points. We describe a longitudinal metabolite dataset containing nearly 600 serum nuclear magnetic resonance (NMR) spectra obtained from samples collected simultaneously from the pulmonary artery (deoxygenated blood) and left atrium (oxygenated blood) before ischemia (pre-CPB), immediately after reperfusion (end-CPB), and the following 2, 4, 8, and 20 hours postoperatively. In addition, a longitudinal dataset including 57 quantified metabolites is also provided. These datasets will help researchers studying ischemia-reperfusion injury, as well as the time-dependent alterations related to the surgical trauma and the subsequent processes required in regaining metabolite balance. The datasets could also be used for the development of processing algorithms for NMR-based metabolomics studies and methods for the analysis of longitudinal multivariate data.


Subject(s)
Cardiopulmonary Bypass/adverse effects , Metabolomics , Reperfusion Injury/blood , Humans , Magnetic Resonance Spectroscopy
9.
Metabol Open ; 4: 100018, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32812938

ABSTRACT

BACKGROUND: Oxygen is a liberally dosed medicine; however, too much oxygen can be harmful. In certain situations, treatment with high oxygen concentration is necessary, e.g. after cardiopulmonary resuscitation. The amount of oxygen and duration of hyperoxia causing pulmonary damage is not fully elucidated. The aim of this study was to investigate pathophysiological and metabolite changes in lung tissue during hyperoxia while the lungs were kept open under constant low pressure. METHODS: Seven pigs were exposed to 100% oxygen for five hours, using an apneic oxygenation technique with one long uninterrupted inspiration, while carbon dioxide was removed with an interventional lung assist. Arterial blood samples were collected every 30 minutes. Lung biopsies were obtained before and after hyperoxia. Microscopy and high-resolution magic angle spinning nuclear magnetic resonance spectroscopy were used to detect possible pathological and metabolite changes, respectively. Unsupervised multivariate analysis of variance and paired sample tests were performed. A two-tailed p-value ≤ 0.05 was considered significant. RESULTS: No significant changes in arterial pH, and partial pressure of carbon dioxide, and no clear histopathological changes were observed after hyperoxia. While blood glucose and lactate levels changed to a minor degree, their levels dropped significantly in the lung after hyperoxia (p ≤ 0.04). Reduced levels of antioxidants (p ≤ 0.05), tricarboxylic acid cycle and energy (p ≤ 0.04) metabolites and increased levels of several amino acids (p ≤ 0.05) were also detected. CONCLUSION: Despite no histological changes, tissue metabolites were altered, indicating that exposure to hyperoxia affects lung tissue matrix on a molecular basis.

10.
Sci Rep ; 7: 40275, 2017 01 11.
Article in English | MEDLINE | ID: mdl-28074924

ABSTRACT

Cardiovascular disease is the leading cause of death worldwide and patients with severe symptoms undergo cardiac surgery. Even after uncomplicated surgeries, some patients experience postoperative complications such as lung injury. We hypothesized that the procedure elicits metabolic activity that can be related to the disease progression, which is commonly observed two-three days postoperatively. More than 700 blood samples were collected from 50 patients at nine time points pre-, intra-, and postoperatively. Dramatic metabolite shifts were observed during and immediately after the intervention. Prolonged surgical stress was linked to an augmented anaerobic environment. Time series analysis showed shifts in purine-, nicotinic acid-, tyrosine-, hyaluronic acid-, ketone-, fatty acid, and lipid metabolism. A characteristic 'metabolic biosignature' was identified correlating with the risk of developing postoperative complications two days before the first clinical signs of lung injury. Hence, this study demonstrates the link between intra- and postoperative time-dependent metabolite changes and later postoperative outcome. In addition, the results indicate that metabotyping patients' journeys early, during or just after the end of surgery, may have potential impact in hospitals for the early diagnosis of postoperative lung injury, and for the monitoring of therapeutics targeting disease progression.


Subject(s)
Cardiac Surgical Procedures/adverse effects , Lung Injury/metabolism , Postoperative Complications/metabolism , Stress, Physiological , Aged , Disease Susceptibility , Female , Humans , Lung Injury/diagnosis , Lung Injury/etiology , Male , Middle Aged , Postoperative Complications/etiology , Postoperative Period
11.
BMC Microbiol ; 16: 80, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27150914

ABSTRACT

BACKGROUND: Staphylococcus aureus gene expression has been sparsely studied in deep-sited infections in humans. Here, we characterized the staphylococcal transcriptome in vivo and the joint fluid metabolome in a prosthetic joint infection with an acute presentation using deep RNA sequencing and nuclear magnetic resonance spectroscopy, respectively. We compared our findings with the genome, transcriptome and metabolome of the S. aureus joint fluid isolate grown in vitro. RESULT: From the transcriptome analysis we found increased expression of siderophore synthesis genes and multiple known virulence genes. The regulatory pattern of catabolic pathway genes indicated that the bacterial infection was sustained on amino acids, glycans and nucleosides. Upregulation of fermentation genes and the presence of ethanol in joint fluid indicated severe oxygen limitation in vivo. CONCLUSION: This single case study highlights the capacity of combined transcriptome and metabolome analyses for elucidating the pathogenesis of prosthetic infections of major clinical importance.


Subject(s)
Gene Expression Profiling/methods , Knee Prosthesis/adverse effects , Metabolomics/methods , Prosthesis-Related Infections/microbiology , Sequence Analysis, RNA/methods , Staphylococcus aureus/isolation & purification , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Humans , Pilot Projects , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...